Incorporating behavioral model into transport optimization

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

December 3, 2018
Demand and supply

1. Demand and supply
2. Disaggregate demand models
3. A simple example
4. A generic framework
5. MILP
6. Conclusion
Mobility as a service

Demand orientation [Jittrapirom et al., 2017]

- User-centric paradigm
- Best from customer’s perspective
- Demand responsive

Personalization

- Every user has different needs
- Tailor-made solutions
- Social network
Mobility as a service

Key challenges [Jittrapirom et al., 2017]
- Demand-side modeling
- Supply-side modeling
- Governance and business model to match supply and demand
Outline

1. Demand and supply
2. Disaggregate demand models
3. A simple example
4. A generic framework
5. MILP
6. Conclusion
Choice models

Behavioral models

- Demand = sequence of choices
- Choosing means trade-offs
- In practice: derive trade-offs from choice models
Choice models

Theoretical foundations

- Random utility theory
- Choice set: C_n
- $y_{in} = 1$ if $i \in C_n$, 0 if not
- Logit model:

$$P(i|C_n) = \frac{y_{in}e^{v_{in}}}{\sum_{j \in C} y_{jn}e^{v_{jn}}}$$
Logit model

Utility

\[U_{in} = V_{in} + \varepsilon_{in} \]

- Decision-maker \(n \)
- Alternative \(i \in C_n \)

Choice probability

\[P_n(i|C_n) = \frac{y_{in}e^{V_{in}}}{\sum_{j \in C} y_{jn}e^{V_{jn}}} . \]
Variables: \(x_{in} = (p_{in}, z_{in}, s_n) \)

Attributes of alternative \(i \): \(z_{in} \)
- Cost / price \((p_{in}) \)
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Characteristics of decision-maker \(n \): \(s_n \)
- Income
- Age
- Sex
- Trip purpose
- Car ownership
- Education
- Profession
- etc.
Demand curve

Disaggregate model

$$P_n(i|p_{in}, z_{in}, s_n)$$

Total demand

$$D(i) = \sum_n P_n(i|p_{in}, z_{in}, s_n)$$

Difficulty

Non linear and non convex in p_{in} and z_{in}
Outline

1. Demand and supply
2. Disaggregate demand models
3. A simple example
4. A generic framework
5. MILP
6. Conclusion
Example

Choice set: Jupiler
- ’t Klooster $i = 0$
- Belvédère $i = 1$

Utility functions

\[
V_{0n} = -2.2p_0 - 1.3 \\
V_{1n} = -2.2p_1
\]

Prices

- ’t Klooster: [0 – 6 €]
- Belvédère: 1.8 €
Demand and revenues

![Graph showing demand and revenues](image)

- **Demand**
- **Revenues**

Choice probability vs. Price

- **Price** range: 0 to 6
- **Demand** curve:
 - Peak at around 1.5
- **Revenues** curve:
 - Higher values at lower prices

Michel Bierlaire (EPFL)

Behavioral models and optimization

December 3, 2018
Heterogeneous population

Two groups in the population

$$V_{0n} = -\beta_n p_0 + c_0$$

Mathematics: 25%

$$\beta_1 = -4.5, \quad c_1 = -1.3$$

Business: 75%

$$\beta_2 = -0.25, \quad c_2 = -1.3$$
Demand per market segment

A simple example

Choice probability vs Price

Demand math
Demand business
Total demand

Michel Bierlaire (EPFL)
Behavioral models and optimization
December 3, 2018 15 / 40
Demand and revenues

A simple example

Revenues
Demand

Price

Choice probability

Revenues

Demand

0 1 2 3 4 5 6

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
Optimization

Pricing

- Non linear optimization problem.
- Non convex objective function.
- Multimodal function.
- May feature many local optima.
- In practice, the groups are many, and interdependent.
- Optimizing each group separately is not feasible.
Optimization

Pricing

- Non linear optimization problem.
- Non convex objective function.
- Multimodal function.
- May feature many local optima.
- In practice, the groups are many, and interdependent.
- Optimizing each group separately is not feasible.

Assortment

What about assortment?
Heterogeneous population, two products

Utility functions: math

\[V_{K, \text{Jupiler}, m} = -4.5p_{K, \text{Jupiler}} - 1.3 \]
\[V_{K, \text{Orval}, m} = -4.5p_{K, \text{Orval}} - 1.3 + 3 \]
\[V_{B, \text{Jupiler}, m} = -4.5p_{B, \text{Jupiler}} \]
\[V_{B, \text{Orval}, m} = -4.5p_{B, \text{Orval}} + 3 \]

Utility functions: HEC

\[V_{K, \text{Jupiler}, b} = -0.25p_{K, \text{Jupiler}} - 1.3 \]
\[V_{K, \text{Orval}, b} = -0.25p_{K, \text{Orval}} - 1.3 + 1 \]
\[V_{B, \text{Jupiler}, b} = -0.25p_{B, \text{Jupiler}} \]
\[V_{B, \text{Orval}, b} = -0.25p_{B, \text{Orval}} + 1 \]
A simple example

Total revenues

Revenues Jupiler
Revenues Orval
Total revenues

Michel Bierlaire (EPFL) Behavioral models and optimization December 3, 2018 19 / 40
Outline

1. Demand and supply
2. Disaggregate demand models
3. A simple example
4. A generic framework
5. MILP
6. Conclusion
In transportation

Assortment and pricing

- Airlines
- Deregulated railways
- Mobility as a service
Assortment and pricing

- Combinatorial problem
- For each potential assortment, solve a pricing problem
- Select the assortment corresponding to the highest revenues
- MINLP
- Non convex relaxation
Disaggregate demand models

Advantages
- Theoretical foundations
- Market segmentation
- Taste heterogeneity
- Many variables
- Estimated from data

Disadvantages
- Complex mathematical formulation
- Not suited for optimization
- Literature: heuristics
Research objectives

Observations
- Revenues is not the only indicator to optimize,
 e.g. customer satisfaction.
- Many transportation applications need a demand representation.

Goal
- Generic mathematical representation of choice models,
 designed to be included in MILP,
 linear in the decision variables.
Outline

1. Demand and supply
2. Disaggregate demand models
3. A simple example
4. A generic framework
5. MILP
6. Conclusion
The main idea
The main idea

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.
The main idea

Linearization
- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles
Each customer solves an optimization problem
The main idea

Linearization
- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles
Each customer solves an optimization problem

Solution
Use the utility and not the probability
A linear formulation

Utility function

\[U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}. \]

Simulation

- Assume a distribution for \(\varepsilon_{in} \)
- E.g. logit: i.i.d. extreme value
- Draw \(R \) realizations \(\xi_{inr}, r = 1, \ldots, R \)
- The choice problem becomes deterministic
Draws

- Draw R realizations ξ_{inr}, $r = 1, \ldots, R$
- We obtain R scenarios

$$U_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.
MILP (in words)

\[
\begin{align*}
\text{MILP} & \\
\text{max} \quad & \text{benefit} \\
\text{subject to} \quad & \text{utility definition} \\
& \text{availability} \\
& \text{discounted utility} \\
& \text{choice} \\
& \text{capacity allocation} \\
& \text{price selection}
\end{align*}
\]
A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.
A case study

Challenge

• Take a choice model from the literature.
• It cannot be logit.
• It must involve heterogeneity.
• Show that it can be integrated in a relevant MILP.

Parking choice

• [Ibeas et al., 2014]
Parking choices [Ibeas et al., 2014]

Alternatives
- Paid on-street parking
- Paid underground parking
- Free street parking

Model
- $N = 50$ customers
- $C = \{\text{PSP, PUP, FSP}\}$
- $C_n = C \quad \forall n$
- $p_{in} = p_i \quad \forall n$
- Capacity of 20 spots
- Mixture of logit models
General experiments

Uncapacitated vs Capacitated case
- Maximization of revenue
- Unlimited capacity
- Capacity of 20 spots for PSP and PUP

Price differentiation by population segmentation
- Reduced price for residents
- Two scenarios
 1. Subsidy offered by the municipality
 2. Operator is forced to offer a reduced price
Uncapacitated vs Capacitated case

Uncapacitated

Capacitated
Computational time

<table>
<thead>
<tr>
<th>R</th>
<th>Uncapacitated case</th>
<th></th>
<th>Capacitated case</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sol time</td>
<td>PSP</td>
<td>PUP</td>
<td>Rev</td>
</tr>
<tr>
<td>5</td>
<td>2.58 s</td>
<td>0.54</td>
<td>0.79</td>
<td>26.43</td>
</tr>
<tr>
<td>10</td>
<td>3.98 s</td>
<td>0.53</td>
<td>0.74</td>
<td>26.36</td>
</tr>
<tr>
<td>25</td>
<td>29.2 s</td>
<td>0.54</td>
<td>0.79</td>
<td>26.90</td>
</tr>
<tr>
<td>50</td>
<td>4.08 min</td>
<td>0.54</td>
<td>0.75</td>
<td>26.97</td>
</tr>
<tr>
<td>100</td>
<td>20.7 min</td>
<td>0.54</td>
<td>0.74</td>
<td>26.90</td>
</tr>
<tr>
<td>250</td>
<td>2.51 h</td>
<td>0.54</td>
<td>0.74</td>
<td>26.85</td>
</tr>
</tbody>
</table>
Outline

1. Demand and supply
2. Disaggregate demand models
3. A simple example
4. A generic framework
5. MILP
6. Conclusion
Summary

Demand and supply
- Supply: prices and capacity
- Demand: choice of customers
- Interaction between the two

Discrete choice models
- Rich family of behavioral models
- Strong theoretical foundations
- Great deal of concrete applications
- Capture the heterogeneity of behavior
- Probabilistic models
Optimization

Discrete choice models
- Non linear and non convex
- Idea: use utility instead of probability
- Rely on simulation to capture stochasticity

Proposed formulation
- Linear in the decision variables
- Large scale
- Fairly general
Ongoing research

- Decomposition methods.
- Competitive markets: several suppliers.