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Motivation

The Black Swan Theory

• Events that are highly unlikely to happen, but would have 

impacting consequences if they happened

• The “unknown unknowns”

• Positive and negative events 

Model risk

• One cannot predict the behaviour of such Black Swan events

• Try to rationalize how our models will perform on unseen data in 

other ways

Discrete Choice and Machine Learning take a different approach

• Is one method better than the other?

• How can we learn from each other?
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Motivation
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Predicting market 
share

Estimate a 
choice 
model

Predicting market 
share

Model transfer
Model X Model X Misspecified 

model?

Could we use out of sample prediction error % 
as an indicator of model reliability?



Current research gap

• Bridge the gap between Discrete Choice and Machine Learning

• Common testing practices are transferrable (both ways)

• Measuring out-of-sample prediction performance in literature

• Pros & cons of DCM & ML

• Incorporating ML techniques into discrete choice?

• Evaluating statistical significance of Machine Learning models

• Use out-of-sample performance (+ statistical tests) to validate our model

• In addition to economic indicators
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Overview

1. Introduction: What is out-of-sample data and out-of-sample prediction performance?

2. Discrete Choice vs Machine Learning: Improving out-of-sample prediction

• Data

• Testing

• Models

3. Optimizing our models on out-of-sample performance

• Example using residual neural networks

4. Conclusions and future work
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Introduction

• Out-of-sample data

• Unseen data: absent data, major disruption 

event, etc.

• Not in our data sample/collection

• Out-of-sample prediction

• We want our model to perform equally well for 

any problem we throw at it

• Generalization

• As an indicator for model specification reliability

The Universe

Our data
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Data magic

We cannot possibly test our models on unseen data!

• Surrogate testing have been developed (DCM & ML)

Idea: “Reach into an alternate universe for data”

• We have already been doing it for years

• Ensure coverage of likely and unlikely events
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Big Data

• Active research in data science

• Mainly used in Machine Learning

• e.g. Combining mobility and epidemic dynamics (Balcan et al. 

2010)

• Focuses on merging many unrelated data sources to create 

hypothetical scenarios

• Difficult task to achieve, but very effective

• Not necessarily need to be “large” in size

• Diversification is more important (rich data)
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Balcan, D., Gonçalves, B., Hu, H., Ramasco, J.J., Colizza, V. and Vespignani, A., 2010. 

Modeling the spatial spread of infectious diseases: The GLobal Epidemic and Mobility 

computational model. Journal of computational science, 1(3), pp.132-145.



What about discrete choice?

Stated preference (SP) surveys

• Hypothetical scenario posed to respondents

• Caveat: relies on prior knowledge of individuals

• Advantage: ability to control parameters of the data

Data synthesis

• Used in both DCM and ML

• Pop. synthesis, simulation

Data through emulated experience

• Virtual Immersive Reality Environment (Farooq et al. 2018)
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Farooq, B., Cherchi, E. and Sobhani, A., 2018. Virtual immersive reality for stated preference travel behavior experiments: 

A case study of autonomous vehicles on urban roads. Transportation research record, 2672(50), pp.35-45.



State of research

Discrete Choice Machine Learning

Data Stated Preference (SP) survey
Data synthesis

“Big Data” – combining data
Data synthesis

Testing

Model
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Testing
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Discrete choice (economics): evaluating a model

Machine learning: evaluating a learning algorithm

- Economic indicators, 

- beta parameters, 

- measurements (WTP, VOT, 

Elasticities)

- Search algorithm parameters

- Model functions (activation 

functions)

- Weights (or hyperparameters)



Out-of-sample validation

• Data represents the entire known space

• How do we “test” unseen data using only seen 
data?

• Bootstrapping

• In-sample data → Universe

• Holdout method

• Split the data into training/validation set

• Cross Validation
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Holdout validation

• Segmentation of data into training/validation set

• Simple test of out-of-sample performance

• Alternative: k-fold validation

• Ratio of split can affect results

• Usually 70:30 (train:valid) used in literature

• Method to test in-sample prediction

• Assuming no significant behaviour difference 
between the two datasets

• How large of a sample to use? (Alwosheel et al. 
2018)

Training set Validation set
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Alwosheel, A., van Cranenburgh, S. and Chorus, C.G., 2018. Is your dataset big 

enough? Sample size requirements when using artificial neural networks for 

discrete choice analysis. Journal of choice modelling, 28, pp.167-182.



Training/validation split

Scenario 1:

• Balanced 70:30 split

• Performance within similar 
trend/behaviour

• Not so informative on 
generalization

Scenario 2:

• Unbalanced 70:30 split

• Simulating hypothetical 
scenarios

• More informative

• On an aggregate level only

Car: 40
Bus: 30

Cycling: 30

Car: 28
Bus: 21

Cycling: 21

Car: 12
Bus: 9

Cycling: 9

Car: 40
Bus: 25

Cycling: 5

Car: 0
Bus: 5

Cycling: 25

predict

predict

Training set

Training set

Validation set

Validation set
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Cross-validation

Approach

• Use just a part of our data to predict another part for 
every possible combination of train/validation data

• The average error would be representative of out-of-
sample data (even though we don’t have any)

• Smaller the variation in error across pairs, better the 
generalization across problems

Generalization error: how well our algorithm would 
perform if we use real world data to predict unseen data 
(Nadeau & Bengio, 2000)
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Nadeau, C. and Bengio, Y., 2000. Inference for the generalization error. In Advances in 

neural information processing systems (pp. 307-313).



Going further than cross-validation

Training set

Valid set 
+ noise

Valid set
+ noise

• Other useful methods for testing disaggregate 
level

• Adding noise

• Synthetic population + distribution noise

• Learning from behaviour theory

• DCM practices offer better ways of generating 
noise via expert knowledge than ML
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Discrete Choice Machine Learning

Data Stated Preference (SP) survey
Data synthesis

“Big Data” – combining data
Data synthesis

Testing Goodness-of-fit, t-test, bootstrap
Random parameter tests1

Cross-validation
Noise/data corruption

Un-balancing data

Model

1 Fosgerau and Bierlaire, 2007. A practical test for the choice of mixing distribution in discrete choice models. Trans. Res. Part B: Methodological, 41 (7), pp.784-794.

State of research
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Model choice

Information in unobserved factors

• Problems with misspecification:

• From SP design w/ RP data (Guevara, C. A., & Hess, S., 2019)

• Ommited attributes (Petrin, A. & Train K., 2003, 2010)

• Latent Variables (Walker, Ben-Akiva, 2002)

Statistical theory assumes that a model is correctly specified

• Model misspecification from endogeneity problem

ML: There is endogeneity problem → unable to “learn” → poor performance: model misspecified
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Discrete Choice approach

Control function (CF) (Petrin, A. & Train K., 2003; Guevara, C. A., & Hess, S., 2019)

𝑈𝑛𝑗 = 𝑉 𝑥𝑛𝑗 , 𝛽𝑛𝑗 + 𝐶𝐹(𝜇𝑛, 𝜆) + 𝜀𝑛𝑗

• Utility corrected for demand error in attributes

• “two-stage residual inclusion estimation” (Terza, 2018)

Mother logit (Timmermans et al., 1991; McFadden, Train & Tye, 1977)

𝑈𝑛𝑗 = 𝑉 𝑥𝑛𝑗 , 𝛽𝑛𝑗 + 𝑧 𝑉1,…,𝐽 + 𝜀𝑛𝑗

• Utility depend on attributes from all alternatives 

• Cross-effects representing correction to the utility

• Generalized function to account for IIA property violations
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Machine Learning approach

Neural networks are learning algorithms developed for maximizing out-of-sample predictive performance

• Selects the hyperparameters that minimizes out-of-sample error

• Structure, activation function, learning rate, gradient descent method, regularization, etc.

• Independent from model parameters

If we have no knowledge about the unobserved information, we can optimize a generic neural network to “capture” 

this bias or error.

• Solution: Cast the model correction as an neural network optimization problem → residuals

𝑈𝑛𝑗 = 𝑉 𝑥𝑛𝑗 , 𝛽𝑛𝑗 + 𝐶𝐹(𝜇𝑛, 𝜆) + 𝜀𝑛𝑗Neural net
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Goal

• Statistical test:

• Null hypothesis: neural network is equal to zero → model correctly specified

𝑈𝑛𝑗 = 𝑉 𝑥𝑛𝑗 , 𝛽𝑛𝑗 + 𝐶𝐹(𝜇𝑛, 𝜆) + 𝜀𝑛𝑗

• Optimization approach: minimizing out-of-sample error

• Compare performance with and without residuals → whether misspecification is present or not

• Statistical significance: We have OOS error mean, variance and # of tests! → we can compute conf. interval

• Generalization to unseen data

Neural net
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Meta-model optimization

• For optimizing performance on unseen data, the goal is to minimize:

• out-of-sample prediction error, AND

• out-of-sample variance

• We choose the hyperparameters, model type and data generating process

• Once we have the algorithm → obtain our final set of model parameters as our final specification

Model 
specification

Hyperparameter 
specification

Model 
training

Evaluate OOS 
prediction

Final model 
specification
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Discrete Choice Machine Learning

Data Stated Preference (SP) survey
Data synthesis

“Big Data” – combining data
Data synthesis

Testing Goodness-of-fit, t-test, bootstrap
Random parameter tests1

Cross-validation
Noise/data corruption

Un-balancing data

Model Mixture models
Random parameters, Control functions

Dynamics

Deep nets (CNN, ResNet)
Dynamics (LSTM, RNN)

Regularization techniques

1 Fosgerau and Bierlaire, 2007. A practical test for the choice of mixing distribution in discrete choice models. Trans. Res. Part B: Methodological, 41 (7), pp.784-794.

State of research
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Optimization on out-of-sample data
Case study on applied Machine Learning methods in Discrete Choice Models
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Case study: Residual Logit model

Multinomial logit model

𝑈𝑛𝑗 = 𝑉 𝑥𝑛𝑗 , 𝛽𝑛𝑗 + 𝜀𝑛𝑗

𝑃𝑛 𝑗 =
𝑒𝑉(𝑥𝑛𝑗,𝛽𝑛𝑗)

σ𝑘∈𝐽 𝑒
𝑉(𝑥𝑛𝑘,𝛽𝑛𝑘)

Multi-layer perceptron (MLP) neural net

𝑈𝑛𝑗 = 𝑉 𝑥𝑛𝑗 , 𝛽𝑛𝑗

Residual Logit (ResLogit)

𝑈𝑛𝑗 = 𝑉 𝑥𝑛𝑗 , 𝛽𝑛𝑗 + 𝐶𝐹(𝜇𝑛 , 𝜆) + 𝜀𝑛𝑗Neural net Neural net

Input

Layer N

Layer N+1

𝑥

𝑥 + 𝐹(𝑥)

𝑥 + 𝐹 𝑥 + 𝐹 𝑥 + 𝐹 𝑥 +⋯

Choice of residual function:

𝑈𝑛𝑗 = 𝑉(𝑥𝑛𝑗 , 𝛽𝑛𝑗) + 𝑓 ℎ𝑇−1; 𝜔𝑇 + 𝑓 ℎ𝑇−2; 𝜔𝑇−1 +⋯+ 𝑓 𝑉;𝜔1 + 𝜀𝑛𝑗

Enabled by the shortcut connection
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Paper: Wong, M. and Farooq, B., 2019. ResLogit: A residual neural network logit model. arXiv preprint arXiv:1912.10058. 



Case study: Residual Logit model

Residual Logit (ResLogit)

𝑈𝑛𝑗 = 𝑉 𝑥𝑛𝑗 , 𝛽𝑛𝑗 + 𝐶𝐹(𝜇𝑛 , 𝜆) + 𝜀𝑛𝑗Neural net

Input

Layer N

Layer N+1

𝑥

𝑥 + 𝐹(𝑥)

𝑥 + 𝐹 𝑥 + 𝐹 𝑥 + 𝐹 𝑥 +⋯

Derived from the Residual Neural Network (ResNet) model

Intuition:

• Deeper neural network should perform better than a shallow network

In practice:

• Increasing # of neural net layers leads to worse performance (He, 2015)

• Problem occurs due to vanishing/exploding gradient problem

Solution:

• Focus on optimizing a residual function instead

• Reusing inputs from the previous layer

𝐹 𝑥 ≔ 𝐻 𝑥 − 𝑥

𝐻 𝑥 = 𝑥 + 𝐹(𝑥)

Similar problem identified in Machine Learning and Discrete Choice!
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DCM Explanation:

Information propagation through layers

→ Endogeneity is a problem for learning 

algorithms too!



Residual function

Probability function:

𝑃𝑛 𝑗 =
exp(𝑉𝑛𝑗 + 𝑔𝑗𝑛)

σ𝑗′∈{1…,𝐽} exp(𝑉𝑛𝑗 + 𝑔𝑗′𝑛)
∀𝑗 ∈ {1,… , 𝐽}

Residual function 𝑔𝑗𝑛:

𝑔𝑗𝑛 = − ෍

𝑚=1

𝑀

ln(1 + exp(𝜽 𝑚 𝒉𝑛
(𝑚−1)

))

Residual weights 𝜃(𝑚); 𝑚 = 1,… ,𝑀 is a 𝐽 × 𝐽 matrix.

Input is a vector of utility from all alternatives:

𝒉𝑛
(0)

= [𝑉𝑛1, 𝑉𝑛2, … , 𝑉𝑛𝐽]
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−ln(1 + exp(𝜽 𝑚 𝒉𝑛
(𝑚−1)

)) (1)

= ׬
1

1+exp 𝜽 𝑚 𝒉𝑛
𝑚−1 (2)

= ෍

d=1,…,∞

1

1+exp θ m hn
m−1

−d
(3)

“sum of logits”



Other studies

Papers that work on similar principles:

• ResLogit (Wong and Farooq, 2019)

• TasteNet-MNL (Han et al., 2020)

• Learning-MNL (Sifringer et al., 2020)

• Assisted specification (Ortelli et al, 2020)

Correcting for endogeneity problem using data-driven machine learning
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Case study: Data & Experiment

Data

• Travel dataset from Montreal (open data, 2016 ed.)

• GPS traces (60,365 unique trips)

• Holdout validation 70:30 split

• Mode choice prediction

Experiment

• Flaws of using deep neural nets (DNN) → MLP does not always perform 

better than MNL

• Use a Residual Logit model to improve model consistency by optimizing on 

OOS error

• 3 model comparison: MNL (baseline), Multi-layer perceptron MLP, ResLogit

• Hyperparameters: 2, 4, 8, and 16 layer neural net function
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Results of model training
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MLP: Fails to capture correlation between error 

terms and explanatory variables, resulting in 

poorer OOS performance than MNL

(misspecification of model using neural net)

(lower is better)

ResLogit: Captures correlation, reduces error →

Model parameters increases generalizability.

(model well specified)



Model estimates & interpretability

Parameters Without residuals (MNL) With residuals (ResLogit RL-16)

choices in parenthesis Standard error in parenthesis

Weekend trip (1) 0.02 (0.007) 0.225 (0.006)

Trip departure time 8am-10am (4) -0.957 (0.039) -3.477 (0.038)

Trip departure time 5pm-7pm (1) 0.029 (0.002) -0.836 (0.004)*

Trip distance (1) 0.409 (0.022) -0.275 (0.001)

Trip distance (2) 0.258 (0.039) 0.133 (0.004)

Trip duration (1) -0.653 (0.027) 0.24 (0.001)

Trip duration (4) 0.88 (0.272) 0.057 (0.005)

Home based trip (1) -0.069 (0.246) -0.015 (0.004)

Home based trip (3) -1.108 (0.075) 1.357 (0.03)

Work based trip (1) -0.016 (0.012) -0.077 (0.004)

Work based trip (2) -0.039 (0.002) 1.386 (0.012)*

Work based trip (5) -1.877 (0.745) -0.353 (0.023)

Log-likelihood -16145 -13121

Choices: 1 Auto; 2 Transit; 3 Bike; 4 Walk; 5 Auto+Transit

*: Increase in standard error
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More reliable estimates for 

generalization  as it gives a 

better performance on OOS 

prediction



Recap and suggestions
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• Leveraging on Big Data

• Novel virtual experience data
Data

• Optimize on out-of-sample error (+stat. tests)

• Model + learning algorithm
Testing

• Neural nets to improve model reliability on error capturing

• Unknown errors from Big Data sources (social media etc._)
Model



This discussion: What we can learn from machine 
learning?

1. Developing an out-of-sample data collection, testing and validation framework

• Indicator of model reliability on forecasting extreme events

• As an objective function for learning optimization

2. Addressing model misspecification

• Methodologies for machine learning can be used in discrete choice

• Our example: residual neural networks → error correction function

• Endogeneity is also an issue in deep learning

• Prediction % performance can be informative on generalizability of our estimates

33



Conclusions

Neural networks are great for fitting model to the “unknown 

unknowns”

• Impossible to predict the future

• But neural networks (+Big Data) are getting really good at it

Similarities in Machine Learning and Discrete Choice

• What can we learn from each other?

Statistical testing of model generalization

• Leverage on out-of-sample prediction tests

• Measure model specification reliability from prediction error
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