A Unimodal Ordered Logit model for ranked choices

Melvin Wong¹ José Ángel Martín-Baos² Michel Bierlaire¹

¹Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

> ²Department of Mathematics University of Castilla-La Mancha, Spain

> > 12 September 2021

EPFL

Unimodal Ordered Logit Model

Outline

- Introduction
- Background
- Methodology: Unimodal logit
- Case study: Crash severity model
- Conclusion

3

(a)

Introduction

- Ordinal scale responses capture qualitative user feedback
- Responses have inherent correlation between alternatives [Small, 1987]

< A

Examples

PT satisfaction, driver star-rating (ride-hailing), crash severity...

 [Krueger et al., 2019, Tirachini and del Río, 2019, Fu, 2020, Loa and Habib, 2021]

3 / 25

Background

[McCullagh, 1980]

Proportional odds model

- Contiguous intervals on a continuous scale
- Points of division assumed to be unknown

\downarrow

[Small, 1987]

Ordered logit, Generalized ordered logit

- Define a latent variable (y^*) that varies across the contiguous intervals
- $y^* \leftarrow$ exogenous features of the response

•
$$y^* = \sum_m \beta_m X_m$$

Choice prob. = probability of lying in any of the intervals

4 / 25

・ロト ・四ト ・ヨト ・ヨト

Modelling non-ordered choices

Assume that there are J alternatives (i = 1, ..., J)

• Denote $y_{ni} = 1$ if individual *n* is ranked in *i* and $y_{ni} = 0$ otherwise

•
$$n = 1, ..., N, U_{n1}, ..., U_{nJ}, U_{ni} \ge \max\{U_{n1}, ..., U_{nJ}\}$$

•
$$U_{ni} = V_{ni} + \varepsilon_{ni}$$
, $\varepsilon_{ni} \sim \text{Gumbel}(0, 1)$ i.i.d.

Multinomial logit model

$$P(y_{ni} = 1) = \frac{\exp(V_{ni})}{\sum_{j=1}^{J} \exp(V_{nj})}$$

For choices with natural ordering, i.i.d. assumption does not hold

Standard MNL model is not suitable in this context of ranked choices

5 / 25

Modelling ordered choices

Example

Vehicle ownership model [Sheffi, 1979]

- j is the number of household vehicles (j = 1, 2, 3,...)
- *n* would prefer *j* over j 1, j 1 over j 2, and so on..
- Correlation between choices not captured (MNL)

6 / 25

4 3 5 4 3 5 5

< A >

Modelling ordered choices

Ordered logit

Estimating thresholds

$$au_1 = 0, \ au_2 = au_1 + \Delta_2, \ au_3 = au_2 + \Delta_3$$

WongMartBier21 (TRANSP-OR) ▲ 西部

Modelling ordered choices

Ordered logit

- The difference between thresholds (e.g. between τ₂ and τ₃) are assumed to be the same for all respondents
- Parameters β_m are constant across all respondents
- Typically set threshold $au_1 = 0$ for model identification

Generalized ordered logit [Eluru et al., 2008]

latent variable combines alt. specific and generic parameters

$$y_n^* = \sum_m \beta_m X_{mn} + \sum_m \beta_{im} X_{mn} + \varepsilon_n$$

• Thresholds are functions of exogenous variables:

$$\tau_i = \tau_{i-1} + \exp(\sum_m \delta_{im} Z_{imn})$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Other models for ordered choices

- Generalized Extreme Value (GEV) [McFadden, 1977]
- Ordered GEV [Small, 1987]
- Dogit model [Gaundry and Dagenais, 1979]
- Dogit OGEV model [Fry and Harris, 2005]

A B F A B F

A different approach for ordered choices

Maximum likelihood estimation

 $ln(P(y_{\text{scenario 1}} = 2)) = ln(P(y_{\text{scenario 2}} = 2))$

 Both result in identical max likelihood, but probability mass function (pmf) is different

Unimodality in ordered choices

Properties

- Unimodality: A single highest value
- Specifically, the a posteriori choice probabilities are unimodal

Natural ordering of choices is captured in the model if there exist an integer $c \in J$ such that:

- $p(y_{ni}|X) \ge p(y_{ni+1}|X)$, for all $i \ge c$ and,
- $p(y_{ni-1}|X) \le p(y_{ni}|X)$, for all $i \le c$

Unimodality in ordered choices

Poisson pmf

The probability of i occurrences of an event in a set of N observations is defined as:

$$P(i) = \frac{\lambda^{i} \exp(-\lambda)}{i!}$$
, for $i = 0, 1, 2, ...$

WongMartBier21 (TRANSP-OR)

12 / 25

Unimodal logit

Applying a unimodal constraint in the utility function:

l

$$\begin{aligned} U_{in} &= V_{in} + \ln(P(i)) + \varepsilon_{in} \\ &= V_{in} + \ln\left(\frac{\lambda^{i} \exp(-\lambda)}{i!}\right) + \varepsilon_{in} \\ &= V_{in} + \underbrace{i \ln(\lambda) - \lambda - \ln(i!)}_{\text{error component } f(\lambda, i)} + \varepsilon_{in} \end{aligned}$$

ec: capture correlations among utilities of alternatives

Conditions

• λ is positive

$$\lambda = f(y_n^*) = \ln(1 + \exp(y_n^*))$$

A (10) × (10) × (10) ×

Unimodal logit

Expressed as a MNL choice probability:

$$P(y_{ni} = 1) = \frac{\exp(\mu \Phi_{in})}{\sum_{j=1}^{J} \exp(\mu \Phi_{jn})}$$
$$\Phi_{in} = V_{in} + i \ln(\lambda) - \lambda - \ln(i!) + \beta_{i0}$$

Behavioural interpretation

Utilities of alternatives are corrected for proximity from the selected choice i

A B > A B >

Unimodal logit

Unimodal logit

Zero-truncated Poission (ZTP) pmf

When a choice set has a "zero" option

 Example: Number of items in a shopping cart include a "no purchase" option

A ZTP Unimodal logit has the following pmf:

$$P(i|i > 0) = \frac{\lambda^{i} \exp(-\lambda)}{i!(1 - \exp(-\lambda))}, \text{ for } i = 1, 2, 3, \dots$$
$$U_{in} = V_{in} + i \ln(\lambda) - \lambda - \ln(i!) - \ln(1 - \exp(-\lambda)) + \varepsilon_{in}$$

WongMartBier21 (TRANSP-OR)

Crash severity model

[City of Tempe, 2018]

Open dataset: High Severity Traffic Crash Data Report

- 39,793 records (2012–2019)
- Five severity levels

1: No injury, 2: possible injury, 3: minor injury, 4: major injury, 5: fatal

• 28 crash and environmental features used (after data cleaning)

Models

Estimation using Biogeme [Bierlaire, 2020]

- Ordered logit
- Unimodal logit
- Zero truncated unimodal logit

3

17/25

(a)

Crash severity model

Model Evaluation

Goodness-of-fit

• Pseudo R-squared measure (ρ^2)

$$\rho^2 = 1 - \frac{\ln LL(\hat{\beta})}{\ln LL(\bar{\beta})}$$

Bayesian Information Criterion (BIC)

 $BIC = -2LL(\beta) + M\ln(Q)$

Out-of-sample accuracy

- Discrete classification accuracy
- Geometric mean probability of correct assignment (GMPCA) [Hillel, 2019]
- Quadratic Weighted Kappa (QWK) [Cohen, 1968]

Model results

Abridged results (1)

Variables	Ordered values	l Logit rob_tTest	Unimod values	al rob_tTest	Zero-tru values	inc Unimodal rob_tTest
age	-0.008	-10.184	-0.015	-22.834	-0.017	-18.351
alcohol	0.384	5.02	0.379	4.625	0.524	4.918
cause distraction	0.08	1.013	-0.287	-4.749	-0.249	-2.83
cause speeding	-0.027	-0.543	-0.271	-6.78	-0.28	-4.824
cause_turn	-0.153	-1.832	-0.355	-6.05	-0.411	-4.611
cause_yield	-0.108	-2.038	-0.341	-8.166	-0.4	-6.784
type cyclist	1.46	17.722	0.619	5.289	0.804	6.265
type driverless	-0.52	-1.465	-1.478	-7.631	-1.744	-5.267
type_pedestrian	1.596	7.657	3.838	8.122	3.066	6.065

Model results

Abridged results (2)

	Ordered Logit		Unimodal		Zero-trunc Unimodal	
Variables	values	rob_tTest	values	rob_tTest	values	rob_tTest
ASC_noinjury (1)			ref.		ref.	
ASC_possinjury (2)			3.673	93.809	2.452	68.248
ASC_nonincap (3)			4.117	104.798	3.446	97.33
ASC_incap (4)			2.449	43.533	1.907	35.544
ASC_fatal (5)			0.788	7.193	0.319	2.889
tau1	0.0	0.0				
delta2	2.611	68.111				
delta3	3.31	39.596				
delta4	2.303	14.98				

(a)

Model results

	Ordered Logit	Unimodal	Zero-trunc Unimodal		
Log likelihood BIC	-17148.44 34628.6	-13471.31 27274.4	-16731.04 33793.8		
$ ho^2$	0.665	0.737	0.673		
Optimization time	0:01:02.27	0:06:26.2	0:07:40.4		
Discrete Class. Acc.	0.839	0.842	0.826		
GMPCA	0.581	0.653	0.59		
QWK	0.758	0.805	0.787		
20% out-of-sample data used					

WongMartBier21 (TRANSP-OR)

イロト イヨト イヨト イヨト

Ξ.

Conclusion

We introduce a new form of choice model for ordered choices

- Unimodal constraint on the *a posteriori* distribution
- Similar β interpretations as Ordered logit

Case study

- Able to capture the influence of relevant crash severity characteristics: driving speed, distracted driving and driverless vehicles
- Exhibit better model fit and forecasting accuracy

Future work

- Negative binomial distribution
- Combination with other error correction functions

Image: A matrix

Thank you for your attention

Estimated models, cleaned data and data analysis are available at: https://github.com/mwong009/unimodal-logit

WongMartBier21 (TRANSP-OR)

Unimodal Ordered Logit Model

12 September 2021

э

23 / 25

References I

- Michel Bierlaire. A short introduction to pandasbiogeme. Technical Report TRANSP-OR 200605, Transport and Mobility Laboratory, ENAC, EPFL, 2020.
- City of Tempe. Crash data report (detail), 2018. URL https://open.tempe.gov/datasets/1-08-crash-data-report-detail.
- Jacob Cohen. Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychological bulletin. 70(4):213. 1968.
- Naveen Eluru, Chandra R Bhat, and David A Hensher. A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes. Accident Analysis & Prevention, 40(3):1033-1054, 2008.
- Tim RL Fry and Mark N Harris. The dogit ordered generalized extreme value model. Australian & New Zealand Journal of Statistics, 47(4):531-542, 2005.
- Xue-mei Fu. Does heavy ict usage contribute to the adoption of ride-hailing app? Travel Behaviour and Society, 21:101-108, 2020.
- Marc JI Gaundry and Marcel G Dagenais. The dogit model. Transportation Research Part B: Methodological, 13(2):105–111, 1979.
- Tim Hillel. Understanding Travel Mode Choice: A New Approach for City Scale Simulation. Thesis, University of Cambridge, 2019.

References II

- Rico Krueger, Taha H Rashidi, and Joshua Auld. Preferences for travel-based multitasking: Evidence from a survey among public transit users in the chicago metropolitan area. *Transportation Research Part F: Traffic Psychology and Behaviour*, 65:334–343, 2019.
- Patrick Loa and Khandker Nurul Habib. Examining the influence of attitudinal factors on the use of ride-hailing services in toronto. *Transportation Research Part A: Policy and Practice*, 146:13–28, 2021.
- Peter McCullagh. Regression models for ordinal data. *Journal of the Royal Statistical Society:* Series B (Methodological), 42(2):109–127, 1980.
- D McFadden. A closed-form multinomial choice model without the independence from irrelevant alternatives restrictions (working paper no. 7703). *Berkeley. CA: University of California, Urban Travel Demand Forecasting Project, Institute of Transportation Studies*, 1977.
- Yosef Sheffi. Estimating choice probabilities among nested alternatives. *Transportation Research Part B: Methodological*, 13(3):189–205, 1979.
- Kenneth A Small. A discrete choice model for ordered alternatives. *Econometrica: Journal of the Econometric Society*, pages 409–424, 1987.
- Alejandro Tirachini and Mariana del Río. Ride-hailing in santiago de chile: Users' characterisation and effects on travel behaviour. *Transport Policy*, 82:46–57, 2019.

25 / 25

イロト イボト イヨト イヨト 一日