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Introduction

Introduction

Ordinal scale responses capture
qualitative user feedback
Responses have inherent
correlation between alternatives
[Small, 1987]

Examples

PT satisfaction, driver star-rating (ride-hailing), crash severity...
[Krueger et al., 2019, Tirachini and del Río, 2019, Fu, 2020, Loa and
Habib, 2021]
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Background

Background

[McCullagh, 1980]

Proportional odds model
Contiguous intervals on a continuous scale
Points of division assumed to be unknown

↓

[Small, 1987]

Ordered logit, Generalized ordered logit
Define a latent variable (y∗) that varies across the contiguous intervals
y∗ ← exogenous features of the response
y∗ =

∑
m βmXm

Choice prob. = probability of lying in any of the intervals
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Background

Modelling non-ordered choices

Assume that there are J alternatives (i = 1, ..., J)
Denote yni = 1 if individual n is ranked in i and yni = 0 otherwise
n = 1, ...,N, Un1, ...,UnJ , Uni ≥ max{Un1, ...,UnJ}
Uni = Vni + εni , εni ∼ Gumbel(0, 1) i.i.d.

Multinomial logit model

P(yni = 1) =
exp(Vni )∑J
j=1 exp(Vnj)

For choices with natural ordering, i.i.d. assumption does not hold
Standard MNL model is not suitable in this context of ranked choices
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Background

Modelling ordered choices

Example

Vehicle ownership model [Sheffi, 1979]
j is the number of household vehicles (j =1, 2, 3,...)
n would prefer j over j − 1, j − 1 over j − 2, and so on..
Correlation between choices not captured (MNL)

> > >
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Background

Modelling ordered choices

Ordered logit

Choice=1 Choice=2 Choice=3 Choice=4

Estimating thresholds
τ1 = 0, τ2 = τ1 + ∆2, τ3 = τ2 + ∆3
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Background

Modelling ordered choices

Ordered logit

The difference between thresholds (e.g. between τ2 and τ3) are
assumed to be the same for all respondents
Parameters βm are constant across all respondents
Typically set threshold τ1 = 0 for model identification

Generalized ordered logit [Eluru et al., 2008]

latent variable combines alt. specific and generic parameters
y∗n =

∑
m βmXmn +

∑
m βimXmn +εn

Thresholds are functions of exogenous variables:
τi = τi−1 + exp(

∑
m δimZimn)
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Background

Other models for ordered choices

Generalized Extreme Value (GEV) [McFadden, 1977]
Ordered GEV [Small, 1987]
Dogit model [Gaundry and Dagenais, 1979]
Dogit OGEV model [Fry and Harris, 2005]
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Methodology: Unimodal logit

A different approach for ordered choices

Maximum likelihood estimation
ln(P(yscenario 1 = 2)) = ln(P(yscenario 2 = 2))

Both result in identical max likelihood, but probability mass function
(pmf) is different
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Methodology: Unimodal logit

Unimodality in ordered choices

Properties
Unimodality: A single highest value
Specifically, the a posteriori choice probabilities are unimodal

Natural ordering of choices is captured in the model if there exist an
integer c ∈ J such that:

p(yni |X ) ≥ p(yni+1|X ), for all i ≥ c and,
p(yni−1|X ) ≤ p(yni |X ), for all i ≤ c
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Methodology: Unimodal logit

Unimodality in ordered choices

Poisson pmf
The probability of i occurrences of an event in a set of N observations is
defined as:

P(i) = λiexp(−λ)
i! , for i = 0, 1, 2, ..
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Methodology: Unimodal logit

Unimodal logit

Applying a unimodal constraint in the utility function:

Uin = Vin + ln(P(i)) + εin

= Vin + ln
(λiexp(−λ)

i !

)
+ εin

= Vin + i ln(λ)− λ− ln(i !)︸ ︷︷ ︸
error component f (λ,i)

+εin

ec: capture correlations among utilities of alternatives

Conditions
λ is positive
λ = f (y∗n ) = ln(1 + exp(y∗n ))
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Methodology: Unimodal logit

Unimodal logit

Expressed as a MNL choice probability:

P(yni = 1) =
exp(µΦin)∑J
j=1 exp(µΦjn)

Φin = Vin + i ln(λ)− λ− ln(i !) + βi0

Behavioural interpretation
Utilities of alternatives are corrected for proximity from the selected choice i
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Methodology: Unimodal logit

Unimodal logit

Unimodal logit

Choice=1 Choice=2 Choice=3 Choice=4

Prob.
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Methodology: Unimodal logit

Zero-truncated Poission (ZTP) pmf

When a choice set has a “zero” option
Example: Number of items in a shopping cart include a “no purchase”
option

A ZTP Unimodal logit has the following pmf:

P(i |i > 0) = λiexp(−λ)
i!(1−exp(−λ)) , for i = 1, 2, 3, ...

Uin = Vin + i ln(λ)− λ− ln(i !)− ln(1− exp(−λ)) + εin
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Case study: Crash severity model

Crash severity model

[City of Tempe, 2018]

Open dataset: High Severity Traffic Crash Data Report
39,793 records (2012–2019)
Five severity levels

1: No injury, 2: possible injury, 3: minor injury, 4: major injury, 5: fatal

28 crash and environmental features used (after data cleaning)

Models
Estimation using Biogeme [Bierlaire, 2020]

Ordered logit
Unimodal logit
Zero truncated unimodal logit
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Case study: Crash severity model

Crash severity model

Model Evaluation

Goodness-of-fit

Pseudo R-squared measure (ρ2)

ρ2 = 1− ln LL(β̂)

ln LL(β̄)

Bayesian Information Criterion (BIC)
BIC = −2LL(β) + M ln(Q)

Out-of-sample accuracy
Discrete classification accuracy
Geometric mean probability of correct assignment (GMPCA) [Hillel,
2019]
Quadratic Weighted Kappa (QWK) [Cohen, 1968]
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Case study: Crash severity model

Model results

Abridged results (1)

Ordered Logit Unimodal Zero-trunc Unimodal
Variables values rob_tTest values rob_tTest values rob_tTest

age -0.008 -10.184 -0.015 -22.834 -0.017 -18.351
alcohol 0.384 5.02 0.379 4.625 0.524 4.918
cause_distraction 0.08 1.013 -0.287 -4.749 -0.249 -2.83
cause_speeding -0.027 -0.543 -0.271 -6.78 -0.28 -4.824
cause_turn -0.153 -1.832 -0.355 -6.05 -0.411 -4.611
cause_yield -0.108 -2.038 -0.341 -8.166 -0.4 -6.784
type_cyclist 1.46 17.722 0.619 5.289 0.804 6.265
type_driverless -0.52 -1.465 -1.478 -7.631 -1.744 -5.267
type_pedestrian 1.596 7.657 3.838 8.122 3.066 6.065
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Case study: Crash severity model

Model results

Abridged results (2)

Ordered Logit Unimodal Zero-trunc Unimodal
Variables values rob_tTest values rob_tTest values rob_tTest

ASC_noinjury (1) ref. ref.
ASC_possinjury (2) 3.673 93.809 2.452 68.248
ASC_nonincap (3) 4.117 104.798 3.446 97.33
ASC_incap (4) 2.449 43.533 1.907 35.544
ASC_fatal (5) 0.788 7.193 0.319 2.889
tau1 0.0 0.0
delta2 2.611 68.111
delta3 3.31 39.596
delta4 2.303 14.98
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Case study: Crash severity model

Model results

Ordered Logit Unimodal Zero-trunc Unimodal

Log likelihood -17148.44 -13471.31 -16731.04
BIC 34628.6 27274.4 33793.8
ρ2 0.665 0.737 0.673
Optimization time 0:01:02.27 0:06:26.2 0:07:40.4

Discrete Class. Acc. 0.839 0.842 0.826
GMPCA 0.581 0.653 0.59
QWK 0.758 0.805 0.787
20% out-of-sample data used
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Conclusion

Conclusion

We introduce a new form of choice model for ordered choices
Unimodal constraint on the a posteriori distribution
Similar β interpretations as Ordered logit

Case study
Able to capture the influence of relevant crash severity characteristics:
driving speed, distracted driving and driverless vehicles
Exhibit better model fit and forecasting accuracy

Future work
Negative binomial distribution
Combination with other error correction functions
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Conclusion

Thank you for your attention

Estimated models, cleaned data and data analysis are available at:
https://github.com/mwong009/unimodal-logit
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