Modeling the walking behavior of pedestrians A discrete choice approach

Michel Bierlaire

TRANSP-OR Transport and Mobility Laboratory Ecole Polytechnique Fédérale de Lausanne transp-or.epfl.ch

Context

- Pedestrian walking behavior
- in normal conditions
- as a function of other pedestrians
- Click here for an example

Context

Objectives:

- Specify a mathematical model to forecast the walking behavior
- Estimate the model parameters on real data
- Validate the model with real data, not involved in the estimation Applications:
 - Pedestrian simulation [*Click here*][*With background*]
 - Pedestrian tracking [Click here]
 - Tracking without model [*Click here*]
 - Tracking with model [*Click here*]

Outline

- Mathematical framework
- Modeling elements
- Model specification
- Estimation data
- Estimation results
- Validation
- Conclusion

Econometric model

$$y = f(x, \beta, \varepsilon)$$

where

- *y* is the dependent variable (e.g. position of the next step)
- x is a vector of independent or explanatory variables (e.g. position and speed of other pedestrians, etc.)
- β is a vector of unknown parameters to be estimated from data
- ε is a (vector of) random variable(s) capturing the errors related to modeling simplifications, data collection, etc.
- *f* is derived from an underlying "economic" theory

Mathematical framework

- Objective: predict where a pedestrian chooses to put her next step
- Theoretical tool: discrete choice theory
- Operational tool: random utility model
- Derivation:
 - 1. Identification of the choice set
 - 2. Characteristics of the decision-maker
 - 3. Attributes of the alternatives
 - 4. Behavioral assumptions
- Illustrative example: choice of transportation mode to go to work

Introduction to choice modeling

Identification of the choice set C_n

- Finite and discrete
- Example: { car as driver, car as passenger, train, bus }

Characteristics S_n of the decision-maker n

- Age, sex, income, etc.
- Trip purpose, value-of-time, etc.

Attributes z_{in} of the alternative *i* for individual *n*

- Cost, travel time, walking time, frequency, etc.
- Level of comfort, reliability, etc.

It is common to merge everything in one vector of variables

$$x_{in} = (z_{in}, S_n)$$

Introduction to choice modeling

Behavioral assumptions: utility theory

- Individual n associates a utility with each available alternative i
- The utility is a function of S_n and z_{in} .
- To capture the uncertainty, an error term is involved.
- Typical formulation

$$U_{in} = V_{in} + \varepsilon_{in}$$

where

- V_{in} is deterministic
- ε_{in} is the error term
- Most common specification:

$$V_{in} = \sum_{k} \beta_k(x_{in})k$$

Introduction to choice modeling

Behavioral assumptions: utility theory

- Individual chooses the alternative with the largest utility
- Choice model:

$$P(i|\mathcal{C}_n) = \Pr(U_{in} \ge U_{jn} \; \forall j \in \mathcal{C}_n)$$

• If ε_{in} are assumed i.i.d. extreme value distributed, we obtain the multinomial logit model

$$P(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}$$

 In the context of pedestrian modeling, a more complex model will be used.

Outline

- $\sqrt{}$ Mathematical framework
 - Modeling elements
 - Model specification
 - Estimation data
 - Estimation results
 - Validation
 - Conclusion

Pedestrian movement based on a hierarchical framework (Daamen, 2004)

- Strategical: list of activities
- Tactical: activity schedule
 - Time and location of activities
 - Choice of itinerary
- Operational: short-term walking behavior
 - The "next step" decision
 - Direction, speed
 - Collision avoidance
 - Leader-follower

In our context

- strategical and tactical decisions are exogenous
- current intermediary destination is known ("next door")
- we focus of a "myopic" behavior
- reactions to the immediate environment, mainly other pedestrians

Given

- the current position $p_n = (x_n, y_n)$
- the current speed v_n (m/sec)
- the current direction d_n , $d_n \in \mathbb{R}^2$, $||d_n|| = 1$
- a visual angle $\theta_n = 170^\circ$

Choice set C_n : individual-specific discretization

Modeling the walking behavior of pedestrians -p.14/52

- 11 directions, relative to d_n
- 3 speed regimes: $0.5v_n$, v_n , $1.5v_n$
- 33 alternatives
- Each alternative is a combination of a direction d and a speed regime \boldsymbol{v}
- Each alternative corresponds to the physical position of the next step

$$c_{vd} = p_n + vtd,$$

Behavioral elements

COLE POLYTECHNIQUE FÉDERALE DE LAUSANNE Modeling the walking behavior of pedestrians – p.16/52

Outline

- \checkmark Mathematical framework
- \checkmark Modeling elements
 - Model specification
 - Estimation data
 - Estimation results
 - Validation
 - Conclusion

Utility:

$$U_{in} = V_{in} + \varepsilon_{in}$$
$$U_{vdn} = V_{vdn} + \varepsilon_{vdn}$$

- 1. Specification of V_{vdn} to capture the behavioral elements
- 2. Specification of ε_{vdn} to capture the spatial correlation

Model specification: keep direction

Model specification: keep direction

- The greater the angle, the lower the utility
- Not necessarily in a pure proportional way
- We include the following terms in the utility function

 $\beta_{\text{dir_central}} \text{dir}_{dn} I_{\text{central}} + \beta_{\text{dir_side}} \text{dir}_{dn} I_{\text{side}} + \beta_{\text{dir_extreme}} \text{dir}_{dn} I_{\text{extreme}}$

- Only one of the terms is non zero
- I_k is 1 if the alternative belongs to zone k
- β . are unknown parameters to be estimated from the data
- We expect them to be negative

Model specification: keep direction

Estimated contributions to the utility

Model specification: toward destination

Model specification: toward destination

- The destination is exogenously given
- Two effects: the distance and the angle
- We include the following terms in the utility function

 $\beta_{\text{ddist}} \text{ddist}_{vdn} + \beta_{\text{ddir}} \text{ddir}_{dn}$

- β . are unknown parameters to be estimated from the data
- We expect them to be negative
- Results:

 $-1.55 \operatorname{ddist}_{vdn} - 0.079 \operatorname{ddir}_{dn}$

- Constant speed is assumed to be the most comfortable
- However, pedestrians accelerate and decelerate to achieve a desired speed
- The desired speed is unknown to the analyst
- Alternatives corresponding to acceleration and deceleration are penalized
- The penalty varies with the current speed
- If the speed is already low, deceleration is less likely
- If the speed is already high, acceleration is less likely

Penalty for alternatives corresponding to deceleration

Modeling the walking behavior of pedestrians - p.25/52

Penalty for alternatives corresponding to acceleration

• We include the following terms in the utility function

$$\begin{array}{ll} & \beta_{\mathsf{dec}} I_{\mathsf{v},\mathsf{dec}} (v_n/v_{\mathsf{max}})^{\lambda_{\mathsf{dec}}} & + \\ & \beta_{\mathsf{accLS}} I_{\mathsf{LS}} I_{\mathsf{v},\mathsf{acc}} (v_n/v_{\mathsf{maxLS}})^{\lambda_{\mathsf{accLS}}} & + \\ & \beta_{\mathsf{accHS}} I_{\mathsf{HS}} I_{\mathsf{v},\mathsf{acc}} (v_n/v_{\mathsf{max}})^{\lambda_{\mathsf{accHS}}} \end{array}$$

- Maximum one term is not zero for each alternative
- *I*_{v,dec} and *I*_{v,dec} indicates if the alternative corresponds to acceleration or deceleration
- I_{LS} and I_{HS} indicates low speed (≤ 1.39) and high speed
- β . and λ . are unknown parameters to be estimated from the data
- Normalization: $v_{max} = 4.84$, $v_{maxLS} = 1.39$ (1.39 m/s = 5km/h)

fcole polytichnique redirale de Lausanne Modeling the walking behavior of pedestrians – p.28/52

- Tendency to follow individuals going in about the same direction
- In each cone, we identify potential leaders
- Individual k is a potential leader

 $\left\{ \begin{array}{l} \text{if } d_l \leq d_k \leq d_r \ \text{(is in the cone),} \\ \text{and } 0 < D_k \leq D_{th} \ \text{(not too far),} \\ \text{and } 0 < |\Delta \theta_k| \leq \Delta \theta_{th} \ \text{(walking in almost the same direction),} \end{array} \right.$

- Among them, the individual k who is the closest is selected as the leader
- Her speed and direction are recorded
- Her presence may trigger a change of speed
- ...with different effects for acceleration and deceleration

Modeling the walking behavior of pedestrians - p.30/52

• We include the following terms in the utility function

• α_{\cdot}^{L} , ρ_{\cdot}^{L} , γ_{\cdot}^{L} and δ_{\cdot}^{L} are unknown parameters to be estimated from the data

Model specification: collision avoidance

- Tendency to avoid individuals coming in the opposite direction
- In each cone, we identify potential "colliders"
- Individual k is a potential collider

 $\left\{ \begin{array}{l} \text{if } d_l \leq d_k \leq d_r \ \text{ (is in the cone),} \\ \text{and } 0 < D_k \leq D_{th}' \ \text{ (not too far),} \\ \text{and } \frac{\pi}{2} \leq |\Delta \theta_k| \leq \pi \ \text{ (walking in the other direction).} \end{array} \right.$

• Among them, the collider is identified as the individual k whose walking direction is the closest to the opposite direction, that is the one with $|\Delta \theta_k|$ closest to π .

Model specification: collision avoidance

FEDIRALE DE LAUSANNE Modeling the walking behavior of pedestrians – p.34/52

Model specification: collision avoidance

We include the following terms in the utility function

- $I_d, d_n = 1$ if $d \neq d_n$, otherwise, that is the term is zero for alternatives corresponding to walking straight ahead
- $I_C = 1$ if there is a collider in the cone, 0 otherwise.

 $V_{vdn} = \beta_{dir central} dir_{dn} I_{central}$ $\beta_{\text{dir side}} \text{dir}_{dn} I_{\text{side}}$ + $\beta_{dir extreme} dir_{dn} I_{extreme}$ + $\beta_{ddist}ddist_{vdn}$ + $\beta_{ddir} ddir_{dn}$ $\beta_{\text{dec}} I_{\text{v.dec}} (v_n / v_{\text{max}})^{\lambda_{\text{dec}}}$ $\beta_{\text{accLS}}I_{\text{LS}}I_{\text{v.acc}}(v_n/v_{\text{maxLS}})^{\lambda_{\text{accLS}}}$ + $\beta_{\text{accHS}}I_{\text{HS}}I_{\text{v.acc}}(v_n/v_{\text{max}})^{\lambda_{\text{accHS}}}$ $I_{\rm v,acc} I^L_{\rm acc} \alpha^L_{\rm acc} D_L^{\rho^L_{\rm acc}} \Delta v_L^{\gamma^L_{\rm acc}} \Delta \theta_L^{\delta^L_{\rm acc}}$ $I_{\rm v,dec} I_{\rm dec}^L \alpha_{\rm dec}^L D_L^{\rho_{\rm dec}^L} \Delta v_L^{\gamma_{\rm dec}^L} \Delta \theta_L^{\delta_{\rm dec}^L}$ $I_{\mathsf{d},d_n} I_C \alpha_C e^{-\rho_C D_C} \Delta v_C^{\gamma_C} \Delta \theta_C^{\delta_C}$

keep direction

toward destination

free flow acceleration

leader-follower

Modeling the walking behavior of pedestrians - p.36/52

Utility:

$$U_{in} = V_{in} + \varepsilon_{in}$$
$$U_{vdn} = V_{vdn} + \varepsilon_{vdn}$$

 \checkmark Specification of V_{vdn} to capture the behavioral elements

• Specification of ε_{vdn} to capture the spatial correlation

The cross-nested logit model

 Bierlaire, M. (2006). A theoretical analysis of the cross-nested logit model, Annals of Operations Research 144(1):287-300. doi:10.1007/s10479-006-0015-x [Click here]

• Choice model:

$$P(i|C) = \sum_{m=1}^{M} \frac{\left(\sum_{j \in C} \alpha_{jm}^{\mu_m} e^{\mu_m V_j}\right)^{\frac{1}{\mu_m}}}{\sum_{n=1}^{M} \left(\sum_{j \in C} \alpha_{jn}^{\mu_n} e^{\mu_n V_j}\right)^{\frac{1}{\mu_n}}} \frac{\alpha_{im}^{\mu_m} e^{\mu_m V_i}}{\sum_{j \in C} \alpha_{jm}^{\mu_m} e^{\mu_m V_j}}$$

- μ . are unknown parameters to be estimated from data
- α . are all fixed to 0.5 in this context.

In summary:

- The context is described by various variables
- The variables are used to associate a utility with each cell
- The utilities are used to associate a probability with each cell

Outline

- \checkmark Mathematical framework
- \checkmark Modeling elements
- \checkmark Model specification
 - Estimation data
 - Estimation results
 - Validation
 - Conclusion

Estimation data

Sendaï, Japan, August 2000 (K. Teknomo)

Estimation data

- 190 pedestrian trajectories
- manually tracked, frame by frame
- 10200 positions
- Two frames per second
- Data from Arsenal Research

Estimation data

Example of a trajectory with some choice sets

Estimation results

- Model estimated with biogeme
- Number of estimated parameters: 24
- Signs of the parameters consistent with our expectation

Outline

- \checkmark Mathematical framework
- \checkmark Modeling elements
- \checkmark Model specification
- \checkmark Estimation data
- \checkmark Estimation results
- Validation
- Conclusion

Validation

- Two data sets
 - Japanese: used for model estimation
 - Dutch: not used for model estimation
- Cross-calibration
- Compare predicted and observed choices

Japanese data: predicted probabilities

Modeling the walking behavior of pedestrians – p.47/52

Japanese data: predicted probabilities

Predicted

Observed

COLE POLYTICHNIQUE FÉDERALE DE LAUSANNE Modeling the walking behavior of pedestrians – p.48/52

Japanese data: cross-validation

- Verify the robustness of the specification
- Re-estimate the model on 80% of the data
- Apply it on the remaining 20%
- Do the same with a simple model which exactly replicates the shares in the data
- Outliers with full model: 7.13%
- Outliers with constant-only model: 19.90%

Model	Exp. 1	Exp. 2	Exp. 3	Exp. 4	Exp. 5
Proposed spec.	8.78%	6.36%	7.60%	7.87%	5.87%
Constant only	20.79%	20.70%	17.13%	19.88%	18.64%

Dutch data

- Collected at TU Delft, 2000-2001
- Controlled experiment with volunteer pedestrians

Dutch data

Predicted

Conclusion

- Model for pedestrian walking behavior
- New methodological framework
- Discrete choice model random utility model
- Specification of the utility to capture key behavioral aspects
- Parameters estimated on real data
- Model has been successfully validated on experimental data collected in TU Delft (The Netherlands)

