Robust and Recoverable Maintenance Routing Schedules

N. Eggenberg, M. Salani, M. Bierlaire

Transport and Mobility Laboratory
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Funded by :

SNSF - Project 200021-118547
Introduction
Some numbers

- **Huge economical impact**¹
 - $1.7 billion loss of revenue for first week
 - $400 million a day for the first 4 days
 - 1.2 million affected passengers / day

- **Spill out due to disrupted / blocked passengers**

¹ www.iata.org/pressroom, Press release No 15, 21 April 2010
Why robustness appeals for airline scheduling

- Airlines have low profitability
 - < 2% profit margin (US, 2007)

- High delays and implied delay costs\(^2\)
 - 4.3 Billion hours delay (US, 2008)
 - $41 Billion delay costs (US, 2008)

\(^2\) *Your flight has been delayed again* (2008), Joint Economic Committee
 www.jec.senate.gov
Worse is still to come

- **Growth:**
 - 2.5% more flights annually
 - Every 1% additional flights incur an additional 5% delays (Schaefer et al., 2005)
 - => Yearly increase of delays of 12.5%

- **Europe:** 50% of flights in 2030 depart or land at congested airports

- **Airlines must react** – we try to help
 - Improve operations in a congested network
Outline

- Optimization under uncertainty
 - In general
 - In airline scheduling

- Robust Maintenance Routing Problem
 - Definitions
 - “Robust” and “Recoverable” models

- Simulation – preliminary results
 - Methodology to evaluate and compare robust solutions
 - Preliminary a priori and a posteriori results
General Optimization Problems
Robustness: plan for stability and reliability

- Optimized solutions have
 - Highest "expected" revenue/yield/profit
 - Known to be sensitive to noise

- Robust solutions have
 - Lower expected revenue/yield/profit
 - Higher reliability
 - Both objectives are conflicting – requires trade-off
Definition of robustness

☐ Unclear in literature
 • For more “stable” solutions (that remain feasible)
 • For more “flexible” solutions
 • For solutions with lower “operational costs”

☐ How to determine what “more robust” means?
 • What metric to use?
 • Should it be a priori or a posteriori?
Other meanings of robustness

- Robustness is also used as a “flexibility” measure
 - Facilitates recovery
 - Reduces recovery costs

- We differentiate
 - **ROBUSTNESS** vs **RECOVERABILITY**
Our objectives

- Examine how robustness proxies and performance metrics are correlated

- Robustness proxies are structural a priori properties of the schedule
 - Expected propagated delay
 - Total slack in aircraft routes
 - Total passenger connection time
 - ...

- Performance metrics are a posteriori metric
 - Observed propagated delay
 - Total passenger delay
 - Recovery costs
 - ...
Airline Scheduling: An iterative Process

-60 to -6 months: Route Choice
-6 months: Fleet Assignment
-6 to -2 months: Maintenance Routing
-6 to -2 months: Crew Pairing
-2 to -1 months: Crew Rostering

-6 months to day D: Revenue Management (passenger booking)

Day of Operations (Disruption Management)
Robustness in airline scheduling

- Robust airline schedules are
 - Operationally more efficient
 - Less sensitive to delay
 - i.e. with reduced delay propagation
Delay Propagation

- 2 types of delays for each flight
 - **Independent** delay: generated during a flight
 - At any stage (taxi, runway, landing, ...)
 - **Propagated** delay
 - Delay due to previously delayed flight
 - Propagation is downstream (possibly to several flights)

- $\text{Del}(f) = \text{ID}(f) + \text{PD}(f)$
- Robustness proxy = expected PD
 - To be minimized
Robust Maintenance Routing Problem (MRP)

- Deterministically known
 - Original schedule (1 maintenance route/aircraft)
- To determine
 - New routes for each aircraft
 - And/or new departure times for each flight
- Constraints
 - Maintenance routes are feasible for each aircraft
 - All flights are covered exactly once
 - Each flight is retimed by at most ±15
 - Total retiming of all flights of at most C minutes (500 or 1000)
- Objective
 - Optimize robustness proxy
Used Uncertainty Feature Optimization (UFO)\(^3\) Models

- Use different UFs:
 - IT: maximize total idle time
 - MIT: maximize sum of minimal idle time of each route
 - CROSS: maximize nbr plane crossings
 - PCON: maximize passenger idle connection time
 - MinPCON: maximize minimal PCON

- Solved with CG algorithm (COIN-OR – BCP package)

\(^3\) Eggenberg et al. (2010), *Uncertainty Feature Optimization: a implicit paradigm for problems with noisy data* (accepted for publication in Networks in June, 2010)
Benchmark

- **Models from literature**
 - EPD: minimize expected propagated delay (Lan et al., 2006)
 - No retiming
 - Allow only plane swaps
 - EPD2: minimize expected propagated delay (AhmadBeygi et al., 2008)
 - No plane swaps
 - Allow for retiming by ± 15 minutes
 - Total retiming bounded (500 or 1000 minutes)

- **Solved with same CG algorithm (COIN-OR – BCP package)** (Eggenberg et al., 2010)
Measuring Recoverability: Methodology

- Solve Robust MRP using different robust models

- Simulate different disruption scenarios
 - Differentiate *independent* and *propagated* delay
 - Update propagated delay according to schedule

- Solve the recovery problem
 - Using same recovery algorithm (Eggenberg et al., 2010)

- Evaluation with external recovery cost evaluator
 - Data and cost-evaluator provided by the *ROADEF Challenge 2009* (challenge.roadef.org/2009)
Scenario Generation

- Use historical data of 2 year and separate it by season
 - Winter (October – March)
 - Summer (April – September)

- For each airport, we have arrival and departure delays

- Generate delays for flight f from A to B drawing from empirical distribution by

 $\text{Del} = 0.5 \times [\text{depDel}(A) + \text{arrDel}(A)]$
Generated schedules

- UFO solutions are the same for Winter and Summer
 - UFis are non-predictive models

- EPD solutions are different
 - Solution depends on estimated delay distribution
 - Based on average delay of each flight, which is different in Winter and in Summer
NotaEon for models

- **Model of** Lan et al., 2006 (minimize expected propagated delay)
 - EPD_W: use average delay of Winter
 - EPD_S: use average delay of Summer

- **Model of** AhmadBeygi et al., 2008 (minimize expected propagated delay)
 - EPD2_W: use average delay of Winter
 - EPD2_S: use average delay of Summer

- **Model name + “_XXX”**
 - XXX is the value of C (maximum allowed retiming in min.)
Simulation Overview – EPD and EPD2

<table>
<thead>
<tr>
<th>Scenario/Schedules</th>
<th>EPD_W & EPD2_W</th>
<th>EPD_S & EPD2_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter Scenarios</td>
<td>OK</td>
<td>WRONG DISTRIBUTION</td>
</tr>
<tr>
<td>Summer Scenarios</td>
<td>WRONG DISTRIBUTION</td>
<td>OK</td>
</tr>
</tbody>
</table>
Used Instance – Derived from instance A01 of the Roadef Challenge 2009

- 608 flights
- 85 aircrafts
- 36010 passengers
- 1 day
Performance Profiles
Over all 25 instances (Winter only)

\[P(r \leq \tau : 1 \leq s \leq n_s) \]

5 models out of 15

- IT_1000
- EPD_W
- EPD_S
- EPD2_W_1000
- EPD2_S_1000
Performance Profiles
Over all 25 instances (Summer only)
Recovery Performance Metrics – Overall (Winter + Summer)

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>IT_1000</th>
<th>MIT_500</th>
<th>PCON_1000</th>
<th>EPD2_W_1000</th>
<th>EPD2_S_1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec. Costs [k €]</td>
<td>249.2</td>
<td>197.4</td>
<td>241.1</td>
<td>249.6</td>
<td>248.6</td>
<td>239.8</td>
</tr>
<tr>
<td>Nbr Canc. Pax</td>
<td>137</td>
<td>104</td>
<td>123</td>
<td>137</td>
<td>139</td>
<td>129</td>
</tr>
<tr>
<td>Avg. Pax delay [min]</td>
<td>33.42</td>
<td>31.55</td>
<td>34.6</td>
<td>33.33</td>
<td>32.97</td>
<td>31.80</td>
</tr>
<tr>
<td>Nbr Cancelled Flights</td>
<td>2.98</td>
<td>2.36</td>
<td>3.08</td>
<td>2.98</td>
<td>2.84</td>
<td>2.94</td>
</tr>
<tr>
<td>Nbr Delayed Flights</td>
<td>53.7</td>
<td>50.6</td>
<td>55.2</td>
<td>53.8</td>
<td>53.1</td>
<td>45.8</td>
</tr>
<tr>
<td>Propagated Delay [min]</td>
<td>9405</td>
<td>7632</td>
<td>9732</td>
<td>9382</td>
<td>9069</td>
<td>6108</td>
</tr>
</tbody>
</table>
Recoverability: Correlation between a priori proxies and performance metrics

<table>
<thead>
<tr>
<th>Overall</th>
<th>Total Slack IT</th>
<th>Minimum Slack MIT</th>
<th>Passenger Connection Time PCON</th>
<th>Expected Propagated Delay EPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery Costs</td>
<td>-0.135</td>
<td>-0.021</td>
<td>-0.135</td>
<td>0.092</td>
</tr>
<tr>
<td># Cancelled Pax</td>
<td>-0.135</td>
<td>-0.016</td>
<td>-0.134</td>
<td>0.082</td>
</tr>
<tr>
<td>Average Pax Delay</td>
<td>-0.084</td>
<td>0.058</td>
<td>-0.086</td>
<td>0.137</td>
</tr>
<tr>
<td># Cancelled Flights</td>
<td>-0.072</td>
<td>-0.014</td>
<td>-0.073</td>
<td>0.056</td>
</tr>
<tr>
<td>Propagated Delay</td>
<td>-0.155</td>
<td>0.171</td>
<td>-0.152</td>
<td>0.409</td>
</tr>
</tbody>
</table>

Bold values are significant with confidence level $\alpha = 0.05$
Conclusions

- We propose a methodology to evaluate the relevance of robustness proxies.

- We show that these proxies are inter-correlated and indeed improve the *recoverability* of the schedule.

- We show that expected propagated delay:
 - is not a good indicator for recoverability
 - is sensitive to errors in the uncertainty model.
Open Research Directions

- Exploit the correlation structure to combine the different robustness proxies

- Explore correlations on wider instance set with disruptions including
 - Imposed flight cancellations
 - Aircraft unavailability periods
 - Airport capacity modifications

- Study other proxies

- Evaluate performances using other recovery algorithms
 - To identify whether correlations are due to the recovery algorithm or if they are globally improving recoverability
The End

Thank you for your attention!