

#### **Stochastic Path Generation Algorithm for Route Choice Models**

**Emma Frejinger and Michel Bierlaire** 

Transport and Mobility Laboratory, EPFL, transp-or.epfl.ch





#### Outline

- Introduction
- Stochastic path enumeration approach
- Sampling of alternatives
- Preliminary numerical results
- Conclusions





#### Introduction

• Route choice problem

Given a transportation network composed of nodes, links, origin and destinations. For a given transportation mode and origin-destination pair, which is the chosen route?

- Discrete choice modeling framework
- Issue

Universal choice set very large, individual specific choice set unknown





#### Introduction

- Choice sets need to be defined prior to the route choice modeling
- Path enumeration algorithms are used for this purpose, many heuristics have been proposed, for example:
  - Deterministic approaches: link elimination (Azevedo et al., 1993), labeled paths (Ben-Akiva et al., 1984)
  - Stochastic approaches: simulation (Ramming, 2001) and doubly stochastic (Bovy and Fiorenzo-Catalano, 2006)





#### Introduction

- Underlying assumption: the actual choice set is generated
- Empirical results suggest that this is not always true
- Our approach:
  - True choice set = universal set
  - Too large
  - Sampling of alternatives





## **Sampling of Alternatives**

 Multinomial logit model (e.g. Ben-Akiva and Lerman, 1985):

$$P(i|\mathcal{C}_n) = \frac{q(\mathcal{C}_n|i)P(i)}{\sum_{j\in\mathcal{C}_n}q(\mathcal{C}_n|j)P(j)} = \frac{e^{V_{in}+\ln q(\mathcal{C}_n|i)}}{\sum_{j\in\mathcal{C}_n}e^{V_{jn}+\ln q(\mathcal{C}_n|j)}}$$

 $C_n$ : set of sampled alternatives  $q(C_n|j)$ : probability of sampling  $C_n$  given that j is the chosen alternative





# **Importance Sampling of Alternatives**

- Attractive paths have higher probability of being sampled than unattractive paths
- Path utilities must be corrected in order to obtain unbiased estimation results





#### **Stochastic Path Enumeration**

- Flexible approach that can be combined with various algorithms, here a biased random walk approach
- The probability of a link l with source node v and sink node w is modeled in a stochastic way based on its distance to the shortest path
- Kumaraswamy distribution, cumulative distribution function  $F(x_{\ell}|a, b) = 1 - (1 - x_{\ell}^{a})^{b}$  for  $x_{\ell} \in [0, 1]$ .

$$x_{\ell} = \frac{SP(v, d)}{C(\ell) + SP(w, d)}$$





#### **Stochastic Path Enumeration**



Importance sampling of alternatives for route choice models - p.9/22

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

#### **Stochastic Path Enumeration**

• Probability for path j to be sampled

$$q(j) = \prod_{\ell = (v,w) \in \Gamma_j} q((v,w) | \mathcal{E}_v)$$

- $\Gamma_j$ : ordered set of all links in j
- v: source node of j
- $\mathcal{E}_v$ : set of all outgoing links from v
- Issue: in theory, the set of all paths  $\mathcal{U}$  is unbounded. We treat it as bounded with size J.





## **Sampling of Alternatives**

- Following Ben-Akiva (1993)
- Sampling protocol
  - 1. A set  $\widetilde{C}_n$  is generated by drawing *R* paths with replacement from the universal set of paths  $\mathcal{U}$
  - 2. Add chosen path to  $\widetilde{\mathcal{C}}_n$
- Outcome of sampling:  $(\widetilde{k}_1, \widetilde{k}_2, \dots, \widetilde{k}_J)$  and  $\sum_{j=1}^J \widetilde{k}_j = R$

$$P(\widetilde{k}_1, \widetilde{k}_2, \dots, \widetilde{k}_J) = \frac{R!}{\prod_{j \in \mathcal{U}} \widetilde{k}_j!} \prod_{j \in \mathcal{U}} q(j)^{\widetilde{k}_j}$$

• Alternative j appears  $k_j = \widetilde{k}_j + \delta_{cj}$  in  $\widetilde{C}_n$ 



Importance sampling of alternatives for route choice models – p.11/22

#### **Sampling of Alternatives**

• Let 
$$\mathcal{C}_n = \{j \in \mathcal{U} \mid k_j > 0\}$$

$$q(\mathcal{C}_n|i) = q(\widetilde{\mathcal{C}}_n|i) = \frac{R!}{(k_i - 1)! \prod_{\substack{j \in \mathcal{C}_n \\ j \neq i}} k_j!} q(i)^{k_i - 1} \prod_{\substack{j \in \mathcal{C}_n \\ j \neq i}} q(j)^{k_j} = K_{\mathcal{C}_n} \frac{k_i}{q(i)}$$

$$K_{\mathcal{C}_n} = \frac{R!}{\prod_{j \in \mathcal{C}_n} k_j!} \prod_{j \in \mathcal{C}_n} q(j)^{k_j}$$

$$P(i|\mathcal{C}_n) = \frac{e^{V_{in} + \ln\left(\frac{k_i}{q(i)}\right)}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn} + \ln\left(\frac{k_j}{q(j)}\right)}}$$





Importance sampling of alternatives for route choice models – p.12/22

- Estimation of models based on synthetic data generated with postulated models
  - Non-correlated paths
     Postulated model same as estimated model (multinomial logit)
  - Correlated paths in a "grid-like" network
     Postulated model is probit and estimated models are multinomial logit and path size logit
- True parameter values are compared to estimates











Importance sampling of alternatives for route choice models – p.14/22

- True model: multinomial logit
  - $U_j = \beta_{\mathsf{L}} \operatorname{\mathsf{length}}_j + \beta_{\mathsf{SB}} \operatorname{\mathsf{nbspeedbumps}}_j + \varepsilon_j$

$$\beta_{\rm L} = -0.6$$
 and  $\beta_{\rm SB} = -0.3$ 

 $\varepsilon_j$  is distributed Extreme Value with location parameter 0 and scale 1

- 500 observations, therefore 500 choice sets are sampled
- Biased random walk using 40 draws with a = 2 and b = 1

Generated choice sets include at least 7, maximum 18

and on average 11.9 paths



|                                                  | MNL       | MNL       |  |  |  |
|--------------------------------------------------|-----------|-----------|--|--|--|
| Sampling correction                              | without   | with      |  |  |  |
| $\widehat{eta}_{L}$ (-0.6)                       | -0.203    | -0.286    |  |  |  |
| Scaled estimate                                  | -0.600    | -0.600    |  |  |  |
| Robust std.                                      | 0.0193    | 0.019     |  |  |  |
| Robust t-test                                    | -10.53    | -15.01    |  |  |  |
| $\widehat{eta}_{SB}$ (-0.3)                      | -0.0194   | -0.143    |  |  |  |
| Scaled estimate                                  | -0.0573   | -0.300    |  |  |  |
| Robust std.                                      | 0.0662    | 0.0661    |  |  |  |
| Robust t-test                                    | -0.29     | -2.17     |  |  |  |
| Null log-likelihood                              | -1069.453 | -1633.501 |  |  |  |
| Final log-likelihood                             | -788.42   | -759.848  |  |  |  |
| Adjusted $ar{ ho}^2$                             | 0.261     | 0.288     |  |  |  |
| BIOGEME has been used for all model estimations. |           |           |  |  |  |





Importance sampling of alternatives for route choice models – p.16/22



Importance sampling of alternatives for route choice models - p.17/22

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

- True model: probit (Burrell, 1968)
  - $U_{\ell} = \beta_{\rm L} \, {\rm length}_{\ell} + \beta_{\rm SB} \, {\rm nbspeedbumps}_{\ell} + \sigma \sqrt{L_{\ell}} \nu_{\ell}$

 $\beta_{\rm L}=-0.6$  and  $\beta_{\rm SB}=-0.4$ 

 $u_{\ell}$  is distributed standard Normal Link utility variance assumed proportional to length with parameter  $\sigma = 0.8$ 

- Path utilities are link additive
- 382 observations are generated after 500 realizations of the link utilities





• Biased random walk using 30 draws with a = 2 and b = 1 (382 choice sets)

Generated choice sets include at least 7, maximum 19 and on average 13.5 paths





|                             | MNL     | MNL     | PSL     | PSL    |
|-----------------------------|---------|---------|---------|--------|
| Sampling correction         | without | with    | without | with   |
| $\widehat{eta}_{L}$ (-0.6)  | -0.627  | -0.978  | -0.619  | -0.969 |
| Scaled estimate             | -0.600  | -0.600  | -0.600  | -0.600 |
| Robust std.                 | 0.0397  | 0.032   | 0.0407  | 0.0358 |
| Robust t-test               | -15.79  | -30.57  | -15.22  | -27.04 |
| $\widehat{eta}_{SB}$ (-0.4) | -0.0822 | -0.0801 | -0.347  | -0.461 |
| Scaled estimate             | -0.0787 | -0.0491 | -0.336  | -0.285 |
| Robust std.                 | 0.052   | 0.0559  | 0.182   | 0.158  |
| Robust t-test               | -1.58   | -1.43   | -1.90   | -2.92  |
| $\widehat{eta}_{PS}$        |         |         | 1.17    | 1.74   |
| Scaled estimate             |         |         | 1.13    | 1.08   |
| Robust std.                 |         |         | 0.788   | 0.705  |
| Robust t-test               |         |         | 1.49    | 2.47   |



ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

|                                                  | MNL      | MNL       | PSL      | PSL       |  |  |
|--------------------------------------------------|----------|-----------|----------|-----------|--|--|
| Sampling correction                              | without  | with      | without  | with      |  |  |
| Null log-likelihood                              | -988.63  | -2769.959 | -988.63  | -2769.959 |  |  |
| Final log-likelihood                             | -676.111 | -653.396  | -674.481 | -649.268  |  |  |
| Adjusted $ar{ ho}^2$                             | 0.314    | 0.337     | 0.315    | 0.340     |  |  |
| BIOGEME has been used for all model estimations. |          |           |          |           |  |  |





Importance sampling of alternatives for route choice models – p.21/22

## **Conclusions and Future Work**

- Stochastic path enumeration algorithms are viewed as an approach for importance sampling of alternatives
- We propose an algorithm that allows for computation of path selection probabilities and correction for sampling
- Ongoing research, further work will be dedicated, for example, to empirical results on real data and correction in prediction



