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Outline

e finite capacity queueing network framework
e model description
e Vvalidation

e case study
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Overall objectives

flow-based —

Modelling scale

Simulation-based

long-term middle-term short-term

Time scale

Current phase: define aggregate analytic model
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Finite capacity networks

Aim: evaluate network performance
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How can we model these networks?

Approach: queueing theory.
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Queueing networks

e Jackson networks
e infinite buffer size assumption

e violated in practice

Between-queue correlation structure

e complex to grasp
e helps explain: blocking, spillbacks, deadlocks, chained events

If these events want to be acknowledged:

finite capacity queueing networks
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Finite capacity queueing networks FCON

Main application fields:

e software architectures performance prediction
e telecommunications

e manufacturing systems

More uncommon applications:
e pedestrian flow through circulation systems

e prisoner flow through a network of prisons with varying security levels

e hospital patient flow
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Queueng: framework

e ¢, parallel servers

e K total capacity: nb serveurs + queueing slots
e ;. average arrival rate
e ;. average service rate

e p;;: transition probabilities (routing)

e station (queue)

e job
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FCQN methods

Evaluate the main network performance measures using the joint stationary distribution.

State of the network: number of jobs per station.

£ = (PN = 1, N =), (o) € (81,0 65))

1. Closed form expression
2. Exact numerical evaluation

small networks (+ specific topologies)

A more flexible approach:
3. Approximation methods: decomposition methods
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Decomposition methods

By decomposing we can aim at analysing:

e arbitrary topology and size

Method description /
1. decompose into subnetworks @ @

I

2. analyse each subnetwork independently
3. evaluate the main performance measures \

(D—
Subnetwork analysis
e Size: single stations

e method: global balance equations.

e oOutput: estimates of the marginal dbns
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Current objective

Existing methods adapted for multiple server + arbitrary topology:

e revise queue capacities (endogenous)

e modify network topologies (analogy with closed form dbn networks)
Requires:

e approximations to ensure integrality of endogenous capacities

e aposteriori validation (e.g. check positivity)

unsuitable for an optimization framework
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Current objective

e multiple server + arbitrary topology + BAS

e preserving initial network configuration (topology + capacities)

e explicitly model blocking events
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Global balance eguations

(7). stationary dbn of station
Q(7): transition rate matrix
S(1): state space
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State space

Upon arrival to a station a job :

1 [queue]

2 is served (active phase) -
3 [blocked]
4 departs

State space of station i :

Si ={(A;, B;,W;) € N>, A; + B; < ¢;, W; < K; —¢;}

We want to evaluate:
71-(7’) — (P((A’La B’L'a W’L) — (a” b7 ’UJ)) V(CL, b7 w) S 8(7’))
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Transition rates

Q (1) is a function of:
e )\;, 11;: average arrival and service rate

° Pz.f . average blocking probability
e /(7,b): average unblocking rate given that there are b blocked jobs
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Transition rates

Consider station ¢ which is in state (A;, B;, W;) = (a, b, w).
Then the possible transitions and their rates are:

(a—1,b+1,w)
ap; P/
(a,b—1,w) (2, 0) b ] api(l — sz)< (a—1,b,w)
> a’? 7w
(a+1,b—1,w—1) (a,b,w —1)
Ai
(a,b,w+1) (a+1,b,w)
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Transition rates

Qi) = f(\i, i, P, (i, b))

Main challenge and complexity
Grasping the between station correlation implies appropriately
approximating the transition rates between these states.

stationary dbn of each station «— marginal dbn of the station

e approximations used to maintain a tractable model

e classical distributional assumptions
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Summary

Aims were:

“Z TRANSP-OR

decompose the network into single stations

solve the global balance equations associated to each station:

m(1)Q(i) =0
>, m(i)s =1

seS(17)

define S(7)
approximate Q(i) = f(As, ui, P/, fi(i, b))

approximate the transition rates
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Summary

([ (i, b) =
[ 2HQG) = 0 1 =
S wl)s = 1
s€S(1) €1 —
%
| f oo, 1 _
{ Q(7) = f(Niy s, P (3, 0)) S fig 7 B
Aeft = (1l - P(N; = K) P(N; = K;) =
A = 7i(1 = P(N; = K;)) + > pjiref
P/ = 2 pijP(N; = Kj)
L J P(BZ' > 0) =
\

e Exogenous : {uq, i, pij,ci, Ki, ¢(i,b)}
e All other parameters are endogenous

e MATLAB fsolve : route for systems of nonlinear equations.

fig (i, b)
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M ethod validation

Validation versus:

e pre-existing decomposition methods

e triangular topology
e tandem two-station

e Simulation results on a set of small networks
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Validation

Theoretical bound on the throughput Bell (1982):

p1r =3, u2=1,c1 =co=1

1=1,7%2=0

scenario Ki —c1

Ko —c2
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Validation

Errors of the distributional estimates

450

300 |

occurrences

150

—-0.08 -0.04 0 0.04 0.08
error

Runs: 3 network topologies with 9 stations each under 5 scenarios.
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Case study

Hospital bed blocking: recent demand for modeling and acknowledging this

phenomenon:
e patient care and budgetary improvements (Cochran (2006), Koizumi (2005))

e flexibility responsiveness of the emergency and surgical admissions procedure
(Mackay (2001)).

The existing analytic hospital network models are limited to:

e feed-forward topologies

e at most 3 units
e Koizumi (2005), Weiss (1987),Hershey (1981).
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HUG application

e Network of interest: network of operative and post-operative rooms in the HUG,

Geneva University Hospital.
e Dataset

e records of arrivals and transfers between hospital units

e 25336 patient records
Oct 2nd 2004 - Oct 2nd 2005

e redunduncies in the dataset eliminated
e used to estimate v, i, p;; (MLE estimators)

Network model:
Unit BOU BOOPERA BOORL IFCHIR IFMED IMMED IMNEURO REV OPERA

REV ORL

Ci 4 8 5 18 18 4 4 10

e beds «— servers

e N0 waiting space < bufferless (K; = ¢;)

6
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e Validation of the results vs. DES.
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HUG application

Transition probabilities conditional on a patient being blocked

unit id 1 2 3 4 5 6 7 8 9
unit BOU BOOPERA BOORL IFCHIR IFMED IMMED IMNEURO REVOPERA REVORL
BO U - - - 0.76 0.04 0.19

BO OPERA - - - 0.59 0.41

BO ORL - - - 0.87 0.13 0.01
IF CHIR 0.12 - - - 0.02 0.04 0.82

IF MED 0.11 - - 0.05 - 0.83

IM MED 0.13 - - 0.16 0.71

IM NEURO 0.34 - 0.01 0.65 0.01

REV OPERA - - - - - - 1.00

REV ORL - - - 0.18 - - 0.82

Sources of blocking:

e |IFMED <« IM MED
IF CHIR <~ IM NEURO

e oOperating suites: BO U, BO OPERA, BO ORL — IF CHIR
e REV OPERA, REV ORL — IM NEURO
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HUG application

Other performance measures

unit id 1 2 3 4 5 6 7 8 9
unit BOU BOOPERA BOORL IFCHIR IFMED IMMED IMNEURO REVOPERA REVORL
K; 4 8 5 18 18 4 4 10 6
Pif 0.02 0.01 0.00 0.06 0.02 0.01 0.01 0.00 0.03
E[B;] 0.04 0.01 0.01 0.22 0.04 0.01 0.01 0.00 0.06
E[N;] 1.37 2.00 0.77 14.03 12.56 2.46 3.19 4.04 0.53

L 3.15 3.92 2.99 76.92 66.67 71.43 66.67 4.55 1.93

i

Blocking may be rare but have a strong impact upon the units:

REV ORL:
° Pz.f = .03
E[B;] _
* BN T
L N ]
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Conclusions and current aams

Conclusions:
e a decomposition method allowing the analysis of FCQN
e explicitly models the blocking phase
e preserves network topology and configuration

e validation versus both pre-existing methods and simulation estimates shows
encouraging results

e application on a real case study
Aims:

e come back to general framework:
integrate with DES.
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