Using smartphone data for travel demand analysis: challenges and opportunities

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil & Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne, Switzerland
Outline

- Data
 - Challenges
 - Opportunities
- Models: route choice
 - the chosen route
 - the non chosen routes
Nokia data collection campaign
Nokia data collection campaign

- Funding source: Nokia Research Center (NRC) at EPFL.
- Participants: About 185.
- Since: September 2009.
- Phone: Nokia N95.
- Collaborators: NRC Lausanne, IDIAP (Switzerland).
Recruitment

snow ball sampling
Participants

- About 185 participants.
- Mostly from Lausanne area.
- ~ 1/3 females.
- < 1/4 students.
Software design

Phone software (EPFLSCOPE)

- written in python Symbian S60;
- starts with the operating system, runs in backend;
- cannot be turned off by users;
- records data constantly;
- uploads data automatically to DB A via wireless network (WIFI, 3G), every 2 hours.

Databases

- are administrated by Nokia;
- a remote database (DB A) with data access API (httprequest, JSON format);
- another geographical database (DB B) copies data from DB A with ~ 12 hours lag (SQL access).
Energy performance

The original software was developed by Nokia.

- With GPS on, one fully charged battery lasts less than 4 hours.

The energy performance was improved by TRANSP-OR, IDIAP and NRC Lausanne.

- Turn off GPS if stationary.
- Determines stationary/moving: GPS, known WLAN, cell ID, accelerometer.
- One fully charged battery can last \(\sim 10 \) hours.
Privacy and security

- Data is owned by participants. They can delete their data from DB A.
- The campaign is permitted and controlled by an ethical committee.
- Nokia and authorized research partners (in CH) get access to the data.

It took **ONE YEAR** for EPFL to get data access (although data had already been in Nokia’s databases).
Data volume

~ 150k-entries/100MB of data per user per month

- Number of GPS points: 11,531,652
- Number of calls: 247,448
- Duration of calls: 6,903h
- Number of sms: 179,358
- Number of video made: 3,890
- Number of pictures taken: 54,537
- Number of unique BT: 543,517
- Number of unique WIFI: 572,910
- Number of unique cell towers (63 countries): 100,505
- Number of unique cell towers (CH): 28,945
- Number of acceleration samples: 1,344,198
- Number of application events captures: 8,280,554
- Number of phone book entries: 115,134
Using smartphone data for travel demand analysis: challenges and opportunities – p. 11/36
Media play
Number of Bluetooth devices

![Graph showing the number of Bluetooth devices vs user count.](image)
Mobility patterns: car
Mobility patterns: train

- High speed
- Low Acceleration
- Stop at station
- some BT ~4
- Bt gone at station
- new BT ~3
- GPS near train track
- Stop at train station
Data

Challenges

- Technological: battery life
- Legal: privacy
- Technical: huge volume of date

Opportunities

- Complex mobility patterns
- Mode
- Route
- Activities
Route choice: the chosen route

- Focus on GPS data from smartphone
- Objective: reconstruct actual paths
Issues
Issues
Issues

- Low data collection rate to save battery (every 10 seconds)
- Inaccuracy due to technological constraints
- Smartphone carried in bags, pockets: weaker signal
- Map matching algorithms do not work with this data
Measurement equations

Objective (derivation in the appendix):

- Given a path p
- Given a sequence of GPS data $(\hat{x}_1, \ldots, \hat{x}_T)$
- What is the likelihood that the sequence has been generated by a smartphone moving along path p?
- Note: different approach from map matching, which is essentially a projection procedure.
- We derive

$$\Pr(\hat{x}_1, \ldots, \hat{x}_T | p),$$

- ... recursively

$$\Pr(\hat{x}_1, \ldots, \hat{x}_T | p) = \Pr(\hat{x}_T | \hat{x}_1, \ldots, \hat{x}_{T-1}, p) \Pr(\hat{x}_1, \ldots, \hat{x}_{T-1} | p).$$
Case study: true path — [-11.3]
Case study: path with a deviation (1) — [-12.9]
Case study: path with a deviation (2) — [-13.2]
Case study: log likelihood from measurement equations

- True path: -11.3
- Deviation 1: -12.9
- Deviation 2: -13.2

- Results are consistent with intuition
Route choice: the non chosen routes

- Choice model: $P_n(i|C_n)$
- Route choice: what is C_n?
- Many “behaviorally motivated” heuristics proposed in the literature.
- Most of the time, the chosen route is not included.
- Frejinger, Bierlaire and Ben-Akiva (2009) propose an econometric approach.
- Idea:
 - Assumption: all paths connecting the OD pair are relevant.
 - Issue: enumeration is prohibitive.
 - Solution: sampling of alternatives.
Sampling of alternatives

- Sample C_n with replacement from C according to $\{q(i)\}_{i \in C}$
- Add the chosen alternative
- k_{in} is the number of times alternative i is contained in C_n
- Correct for sampling when estimating logit model

$$P(i|C_n) = \frac{e^{\mu V_{in} + \ln\left(\frac{k_{in}}{b(i)}\right)}}{\sum_{j \in C_n} e^{\mu V_{jn} + \ln\left(\frac{k_{jn}}{b(j)}\right)}}$$

where $\{b(i)\}_{i \in C}$ is such that $q(i) = b(i) / \sum_{j \in C} b(j)$

Objective: sample paths according to pre-specified $\{b(i)\}_{i \in C}$
Metropolis-Hastings algorithm

- Given
 - a finite state space,
 - positive weights \(\{b(i)\}_i \),
 - and irreducible Markov process

- the Metropolis-Hastings algorithm generates a Markov chain that converges to

\[
q(i) = \frac{b(i)}{\sum_j b(j)}.
\]
Using MH for path sampling

- State space comprises all possible paths
- Weights $b(i)$ favor plausible paths (importance sampling)
- Typically, paths with length close to the shortest path have high probability to be sampled
- Based on a Markov process creating local path modifications
 - too little variability: slow convergence
 - too much variability: random search
- a great deal of technical details must be addressed to obtain a valid algorithm.
Simple example
Simple example

- Target weights:

\[b(i) = \exp[-\mu \delta(\Gamma)] \]

where \(\delta(\Gamma) \) is the length of path \(\Gamma \).

- Note: \(\mu = 0 \) means equal probability.
Scatter plots

(a) $\mu = 0.0$
(b) $\mu = 2.0$
(c) $\mu = 4.0$
Tel-Aviv example
Conclusion

- Route choice modeling is difficult.
- Data: smartphones
- Identify the chosen route
 - Deal with inaccuracy and low rate
 - Probabilistic map matching
- Identify the non chosen routes
 - Sampling of paths
 - Markov Chain Monte-Carlo method
 - The devil is in the details...
 - but it works!
References

 http://dx.doi.org/10.1016/j.trc.2007.07.007

 http://transp-or.epfl.ch/php/abstract.php?type=1&id=BierChenNewm10
References

http://transp-or.epfl.ch/documents/technicalReports/FloeBier11.pdf