
Estimation of discrete choice models: extending

BIOGEME

Michel Bierlaire

Mamy Fetiarison

STRC 2009 September 2009

STRC 2009

Estimation of discrete choice models: extending BIOGEME

Michel Bierlaire
TRANSP-OR
EPFL
Lausanne
phone: +41 21 693 25 37
fax: +41 21 693 80 60
michel.bierlaire@epfl.ch

Mamy Fetiarison
TRANSP-OR
EPFL
Lausanne
phone: +41 21 693 81 00
fax: +41 21 693 80 60
mamynirina.fetiarison@epfl.ch

September 2009

Abstract

Discrete choice models are constantly in evolution in the literature. Since they enable to capture
wide range of situations, they have been widely used by researchers and also practitioners
in several fields of applications including econometrics and transportation demand analysis.
However, estimation procedures are complicated and not always easily available to researchers.

BIOGEME is a free software package for estimating by maximumlikelihood a broad range of
random utility models. It can estimate particularly Multivariate Extreme Value (MEV) models
including the logit model, the nested logit model, the cross-nested logit model, and the network
MEV model, as well as continuous and discrete mixtures of these models. Biogeme has been
designed to provide modelers with tools to investigate a wide variety of discrete choice models
without worrying about the estimation algorithm itself.

In this paper, we present some new features and capabilitiesof Biogeme. To make it more
flexible, we allow explicitly the user to specify the random utility model to be estimated and
the associated likelihood function. With simple formulations, it will be able to handle more
sophisticated models such as latent variable models, latent class models, dynamic models, etc.
required by modern modeling practice, in particular in transportation.

Keywords
logit model, cross-nested model, GEV model, latent variable model, latent class model

1

1 Introduction

Random utility models (RUM) have been intensively used by researchers and practitioners in

several fields of applications including econometrics and transportation demand analysis. The

development of a great deal of new models, designed to model complex behavioral aspects, has

characterized the research activities during the last decades.

The development of Biogeme (Bierlaire (2003)) has been motivated by the need to estimate the

parameters of these new models from real data. The first version of Biogeme, released in 2001,

was designed to estimate the models from the family of Multivariate Extreme Value (MEV)

models (called “Generalized Extreme Value” models by McFadden (1978)). The version 0.7,

released in 2003, introduced random parameters in the models, so that the parameters of mix-

tures of MEV models could be estimated. Originally designedfor the courses and research

at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Biogeme is now widely used in the

research community. As of today, more than 900 persons are registered on the users group.

Nowadays, more complex models are being proposed and used. Among them, hybrid choice

models (Ben-Akivaet al. (2002), Walker (2001)) have received a considerable attention. In

particular, the possibility to include latent variables and latent classes into the discrete choice

framework allows to exploit psychometric data. Also, dynamic models accounting for panel

data are more and more considered (see, among many, Train (2003)). The current version

of Biogeme allows only the estimation of very simple latent class models (based on discrete

random variables), and of simple models with panel data.

Software development requires significant resources. Thisis why it is difficult for a software

like Biogeme to catch up with recent model developments. We describe in this paper a new

version of Biogeme based on a different philosophy. The software is divided into two parts.

The first part, implemented in C++, is taking care of the estimation itself and, in particular,

of the optimization algorithms. Most of this code is adaptedfrom the previous code. The

second part, implemented in Python, is taking care of the models and the likelihood function.

The Python code is automatically translated into a C++ code that computes the loglikelihood

function and its derivatives, so that it can be fed into the optimizer.

For existing models, the type of input required by the user isessentially the same as for the

former version of Biogeme: description of the parameters, specification of the utility func-

tions, and choice of the model. Therefore, it does not necessarily require knowledge of the

Python language. But if the user knows Python, she can benefitfrom all the features of this

programming language (loops, complex data structures, if-then-else statements, etc.). And for

new models, the user can write the full specification of the model and the likelihood function

in Python, and use the software in the exact same way.

2

2 Model specification

The specification of the model with the new Biogeme is based onthe following idea. First,

the specification of simple models follows almost the same structure as the previous version of

the software. Minor differences, due to the usage of the Python language, have been included

and are discussed below. But regular users of Biogeme shouldbe able to use the new version

with a minimum adjustment. Second, the user can exploit the power of the Python language

to write more complex models. A typical example is when the number of alternatives is large,

and loops are convenient to write the specification. Finally, new models, or set of models, with

associated likelihood functions, can be added in a flexible way to Biogeme.

We start below by describing the main modeling elements usedfor the model specification. We

then illustrate their use on a simple example and provide a specification of a latent variable

model.

2.1 Modeling elements

• Fixed parametersare the parameters of the model, that will be estimated. For each of

them, a statement like the following must be provided:

COST = Beta(’COST’, 0.0, -10000, 10000, 0, ’Cost param.’)

where the Python variable on the left hand side can be reused in any future expression,

and the six arguments of theBeta function are defined as follows:

1. Name of the variable (used for the reporting),

2. default value,

3. lower bound,

4. upper bound,

5. status (0 if the parameter must be estimated, 1 if it must bemaintained at its default

value by the algorithm),

6. Short description (optional, used for the reporting in LATEX).

This is exactly the same information provided in the Section[Beta] of the current

version of the package.

• Variables are the headers of the data file, that is, the explanatory variables of the model.

The statement

dataFile = "sample.dat"

defines all the headers in the data file as Python entities thatcan be used in further ex-

pressions. Clearly, any transform can be applied to these variables before being used in

the specification itself, such as

3

logCost = log(cost).

Biogeme also creates an additional variables named

__rowId__

which contains the number of the observation in the data file,starting counting from 0.

Note that the data file must have exactly the same format as in the former version of

Biogeme.

• Random numbersBiogeme handles two types of random numbers. The first type fol-

lows a normal distribution with mean 0 and variance 1, that isN(0, 1). The second

follows a uniform distribution between−1 and1, that isU [−1, 1]. The syntax is the

following:

bioNormal(’aNormal’,’__rowId__’)

defines a normal distribution calledaNormal. The software will generate a set of draws

from this distribution for each different value of the identifier mentioned as the second

argument. In this example, the keyword__rowId__ refers to the row number in the

data file, meaning that a different set of draws will be generated for each row.

bioUniform(’aUniform’,’individualId’)

defines a uniform distribution in[−1, 1] calledaUniform such that a set of draws is

generated for each individual in the sample, not each observation. This feature is partic-

ularly used in the context of panel or stated preference data. Note that if a[0, 1] uniform

distribution is needed, it is obtained from the following transform:

(1 + bioUniform(’aUniform’,’individualId’)) / 2

A wide variety of random parameters can be derived from theserandom numbers. For

instance,

BETA1NORMAL = BETA1 + SIGMA1 * bioNormal(’aNormal’,’__rowId__’)

defines a random parameter, normally distributed, with meanBETA1 and standard devi-

tion SIGMA1, where these two parameters have been properly defined with the function

Beta as described above.

zeroOne = (1 + bioUniform(’aUniform’,’Id’)) / 2

BETA2EXTREME = A - B * log(-log(zeroOne))

defines a random parameter following an extreme value distribution with location param-

eterA and scale parameterB.

• Elements for buildingmathematical expressionsare also provided. These elements

consist of common and expanded mathematical operators and functions:

1. Numerical operations :- (unary minus),+ (addition),- (substraction),* (multi-

plication),/ (division),abs (absolute value),log (natural logarithm),exp (expo-

nential),** (power)

4

2. Boolean operations :& (and),| (or),< (less than),<= (less or equal to),> (greater

than),>= (greater or equal to),== (equal to),<> (not equal to).

3. Element of a dictionary: there are typical cases where several expressions are de-

fined (like the utility functions for each alternative), butonly one of them is relevant

in a given expression (typically, the utility function corresponding to the chosen al-

ternative). We call the set of expressions a “dictionary”. Biogeme provides the

functionElem(dictionary, expression) which enables to reference the

item associated to the keyexpression in dictionary. In Python, a dictio-

nary is a data structure organized like a set of (key, value) pairs, where keys must

be unique. The following example presents how to get the utility of the chosen

alternative:

V = {1: V1,

2: V2,

3: V3,

4: V4,

5: V5,

6: V6}

Vchosen = Elem(V,choice)

wherechoice is an expression that returns one of the values of the key, that is 1,

2, 3, 4, 5 or 6, andV1, V2, V3, V4, V5 andV6 have been specified earlier.

4. Iterators1 are important components that allow to iterate on data, either from the

sample file or from generated draws for random number. There are 3 kinds of

iterator:

– ’Row’ iterator: the element referenced by this iterator is avector of numbers,

typically a row from the data file;

– ’Meta’ iterator: defines an iterator on another iterator. This permits to describe

a hierarchical structure of iterators and allows to model expression such as
∑

n

∏

o

∑

k
p(n, o, k). This is particularly useful in the specification of the

loglikelihood function of models for panel data.

– ’Draw’ iterator: iterates through the draws of random numbers, and is useful

for the computation of integrals by simulation.

The following declarations describe the construction of each iterator object in

Python

rowIterator(iteratorName,dataStructure,indexVariable)

metaIterator(iteratorName,dataStructure,indexVariable)

The 3 arguments of these functions are respectively:

1At the time this paper is written, this feature is being tested and improved. Its syntax may slightly vary in the
future, but the logic will be as described in the paper.

5

(a) iteratorName: name of the iterator;

(b) dataStructure: data structure that the iterator is iterating on. It can be

either the objectDatafile(’myfile.dat’), when the iterator scans the

sample file, or a string of characters with the name of a ’meta’iterator.

(c) indexVariable (optional) is the name of the column in the data file where

the identifier on which the iterator iterates is defined. Typically,__rowId__

or the identifier of an individual for panel data.

The draw iterator is defined asdrawIterator(iteratorName).

5. FunctionsSum(term,iterator) and Prod(term,iterator) express

summation and product of terms (Eg.:
∑

i xi or
∏

j xj). iterator is the name

of the iterator used to access the successive values of the variables in the database,

making possible the evaluation ofterm for each referenced element.term is a

general expression. It can therefore include other summation or product operation

in a recursive way. See examples below.

2.2 Example : Logit model and mixtures

A specification of a logit model is presented in this section.First, the specification of the model

is described. Then the corresponding specification in Python is given as well as some variants

to illustrate the use of loops and model for panel data.

2.2.1 Model

Assume there are 6 alternatives in the choice set for each individual. The deterministic part of

the utility functions is defined as follows :

V1 = ASC1 + β1 ∗ time1 + β2 ∗ cost1
V2 = ASC2 + β1 ∗ time2 + β2 ∗ cost2
V3 = ASC3 + β1 ∗ time3 + β2 ∗ cost3
V4 = ASC4 + β1 ∗ time4 + β2 ∗ cost4
V5 = ASC5 + β1 ∗ time5 + β2 ∗ cost5
V6 = ASC6 + β1 ∗ time6 + β2 ∗ cost6

where ASC1 = 0 (fixed value). ASCi, i ∈ {2, ..., 6}, β1 andβ2 are the parameters that must

be estimated. timej and costj , j ∈ {1, ..., 6} are the explanatory variables. The probability of

choosing alternativei by individualn within the choice setCn is

Pn(i|Cn) =
Aine

Vi

∑6
j=1 AjneVj

, (1)

6

where

Ain =

{

1 if alternativei belongs toCn,

0 otherwise.

For numerical reasons, it is useful to consider the equivalent formulation

Pn(i|Cn) =
Aine

Vi−Vi

∑6
j=1 AjneVj−Vi

=
Ain

∑6
j=1 AjneVj−Vi

. (2)

First, it is less likely that the argument of the exponentialwill generate an overflow. Second,

we save the computation of an exponential at the numerator. The loglikelihood for a sample

with N observations is given by

L =
N
∑

n=1

ln Pn(in|Cn), (3)

wherein is the alternative chosen by individualn.

2.2.2 A simple specification

The full specification in Python of this model is written below. Comments begin with #, so

that characters following this symbol on the same line will be ignored by Biogeme. In this

specification, we assume that the file’sample.dat’ contains the data in the appropriate

format.

Import modules

from biogeme import *

from headers import *

from logit import *

from loglikelihood import *

File containing a sample

dataFile = "sample.dat"

Parameters

ASC1 = Beta(’ASC1’, 0.0, -10000, 10000, 1, ’Cte for alt. 1’)

ASC2 = Beta(’ASC2’, 0.0, -10000, 10000, 0, ’Cte for alt. 2’)

ASC3 = Beta(’ASC3’, 0.0, -10000, 10000, 0, ’Cte for alt. 3’)

ASC4 = Beta(’ASC4’, 0.0, -10000, 10000, 0, ’Cte for alt. 4’)

ASC5 = Beta(’ASC5’, 0.0, -10000, 10000, 0, ’Cte for alt. 5’)

ASC6 = Beta(’ASC6’, 0.0, -10000, 10000, 0, ’Cte for alt. 6’)

7

BETA1 = Beta(’BETA1’, 0, -10000, 10000, 0, ’\beta_1’)

BETA2 = Beta(’BETA2’, 0, -10000, 10000, 0, ’\beta_2’)

Utility. Note that it is not necessary anymore to write ASC2 * one.

V1 = ASC1 + BETA1 * time1 + BETA2 * cost1

V2 = ASC2 + BETA1 * time2 + BETA2 * cost2

V3 = ASC3 + BETA1 * time3 + BETA2 * cost3

V4 = ASC4 + BETA1 * time4 + BETA2 * cost4

V5 = ASC5 + BETA1 * time5 + BETA2 * cost5

V6 = ASC6 + BETA1 * time6 + BETA2 * cost6

Dictionary containing the utilities. The index must correspond

to the values that the choice variable may take

V = {1: V1,

2: V2,

3: V3,

4: V4,

5: V5,

6: V6}

Dictionary containing the definition of availability.

Here, they are taken directly from the data file

av = {1: av1,

2: av2,

3: av3,

4: av4,

5: av5,

6: av6}

Model

prob = logit(V,av,Choice)

Likelihood function

Definition of the iterator

rowIterator(’obsIter’, Datafile(dataFile))

Loglikelihood function

BIOGEME_OBJECT.FORMULA = Sum(log(prob),’obsIter’)

prob = logit(V,av,choice) specifies the model to be estimated. This Python function

implements equation (2) and is defined as follows :

def logit(V,availability,choice) :

8

chosen = Elem(V,choice)

den = 0

for i,v in V.iteritems() :

den += availability[i] * exp(v-chosen)

a = Elem(availability,choice)

P = a / den

return P

We refer the interested reader to the Python documentation (python.org) to decrypt this

piece of code.

2.2.3 Using loops

Assume that the population is segmented, and we want a specification where one parameter is

segment-specific. For the sake of the example, we assume thatthe identifier of the individual

characterizes the group she belongs to in the following way:

• Group 0: ids from 0 to 20,

• Group 1: ids from 21 to 100,

• Group 2: ids from 101 to 150,

• Group 3: ids from 151 and above.

Groups may be defined based on income, age, or any appropriatesocio-economic character-

istics. The following specification involves the use of loops in Python, and should be self-

explanatory:

BETA1 = {}

BETA1[0] = Beta(’BETA_time_g0’, 0, -10000, 10000, 0, ’beta time group 0’)

BETA1[1] = Beta(’BETA_time_g1’, 0, -10000, 10000, 0, ’beta time group 1’)

BETA1[2] = Beta(’BETA_time_g2’, 0, -10000, 10000, 0, ’beta time group 2’)

BETA1[3] = Beta(’BETA_time_g3’, 0, -10000, 10000, 0, ’beta time group 3’)

group = {}

group[0] = ((Id >= 0) & (Id <= 20))

group[1] = ((Id >= 21) & (Id <= 100))

group[2] = ((Id >= 101) & (Id <= 150))

group[3] = (Id >= 151)

9

V1 = ASC1 + BETA2 * cost1

for i in range(4): # <=> for i in [0,1,2,3]

V1 += BETA1[i] * group[i] * time1

By convention, the result of a logical expression is 1 if the expression is true, and 0 otherwise.

Therefore, for each individual, exactly one term involvingtime1 is non-zero.

2.2.4 Panel data

We illustrate here the use of iterators to specify a model forpanel data. Assume again that there

are 6 alternatives as above. The utility functions are now defined as:

V1nt = ASC1 + β1 ∗ time1nt + β2 ∗ cost1nt

V2nt = ASC2 + β1 ∗ time2nt + β2 ∗ cost2nt + ξn

V3nt = ASC3 + β1 ∗ time3nt + β2 ∗ cost3nt + ξn

V4nt = ASC4 + β1 ∗ time4nt + β2 ∗ cost4nt + ξn

V5nt = ASC5 + β1 ∗ time5nt + β2 ∗ cost5nt + ξn

V6nt = ASC6 + β1 ∗ time6nt + β2 ∗ cost6nt + ξn

whereξn is an error component distributed across individuals (not observations). Ifξn were

known, the probability for individualn to make choiceint at timet is given by the logit model:

Pnt(int|ξn) =
Aintnte

Vintnt

∑

j Ajnte
V
jnt

. (4)

The probability that this individual makes the sequence of choices at each time period, knowing

ξn, is given by

Pn({in1, . . . , inT}|ξn) =

T
∏

t=1

Pnt(int|ξn). (5)

As ξn is distributed, we have

Pn({in1, . . . , inT}) =

∫

ξ

Pn({in1, . . . , inT}|ξ)f(ξ)dξ, (6)

wheref is the probability density function ofξ. This is approximated by

Pn({in1, . . . , inT}) ≈
1

R

∑

r

Pn({in1, . . . , inT}|ξr), (7)

10

whereξr are random draws from the appropriate distribution. The loglikelihood function is

therefore

L =
∑

n

log Pn({in1, . . . , inT}). (8)

If we assume thatξn follows a normal distribution of mean 0 and varianceσ2, the above model

can be specified as follows.

from biogeme import *

from logit import *

from headers import *

dataFile = "sample.dat"

ASC1 = Beta(’ASC1’, 0.0, -10000, 10000, 1, ’Cte for alt. 1’)

ASC2 = Beta(’ASC2’, 0.0, -10000, 10000, 0, ’Cte for alt. 2’)

ASC3 = Beta(’ASC3’, 0.0, -10000, 10000, 0, ’Cte for alt. 3’)

ASC4 = Beta(’ASC4’, 0.0, -10000, 10000, 0, ’Cte for alt. 4’)

ASC5 = Beta(’ASC5’, 0.0, -10000, 10000, 0, ’Cte for alt. 5’)

ASC6 = Beta(’ASC6’, 0.0, -10000, 10000, 0, ’Cte for alt. 6’)

BETA1 = Beta(’BETA1’, 0, -10000, 10000, 0, ’\beta_1’)

BETA2 = Beta(’BETA2’, 0, -10000, 10000, 0, ’\beta_2’)

SIGMA = Beta(’SIGMA’, 1.0, -10000, 10000, 0, ’\sigma’)

Id is the identifier of the individual. Draws will be

generated for each individual, and not for each observation.

ERRORCOMP = SIGMA * bioNormal(’aNormal’,’Id’)

V1 = ASC1 + BETA1 * x11 + BETA2 * x12

V2 = ASC2 + BETA1 * x21 + BETA2 * x22 + ERRORCOMP

V3 = ASC3 + BETA1 * x31 + BETA2 * x32 + ERRORCOMP

V4 = ASC4 + BETA1 * x41 + BETA2 * x42 + ERRORCOMP

V5 = ASC5 + BETA1 * x51 + BETA2 * x52 + ERRORCOMP

V6 = ASC6 + BETA1 * x61 + BETA2 * x62 + ERRORCOMP

V = {1: V1,

2: V2,

3: V3,

4: V4,

5: V5,

6: V6}

11

av = {1: av1,

2: av2,

3: av3,

4: av4,

5: av5,

6: av6}

metaIterator(’personIter’,Datafile(dataFile),’Id’)

rowIterator(’panelObsIter’,’personIter’,’__rowId__’)

drawIterator(’drawIter’)

prob = logit(V,av,choice)

condProbIndiv = Prod(prob,’panelObsIter’)

probIndiv = Sum(condProbIndiv,’drawIter’)

loglikelihood = Sum(log(probIndiv),’personIter’)

BIOGEME_OBJECT.FORMULA = loglikelihood

BIOGEME_OBJECT.DRAWS = 1000

2.3 More complex models

We present here the specification of a complex model proposedby Abou Zeid (2009). It in-

cludes latent variables with indicators, ordered logit andcorrelated error components. We refer

the reader to the thesis for the description and motivation of the model. For information, the

model has been translated into Python in less than 20 minutes.

Structural Model

UCar = β0 + β1TimeCar + β2
CostCar

Income
+ εCar. (9)

UPT = β1TimePT + β2
CostPT

Income
+ εPT. (10)

[

εCar

εPT

]

∼ N

([

0

0

]

,

[

1 ρ

ρ 1

])

, −1 ≤ ρ ≤ 1. (11)

The Cholesky decomposition of the variance-covariance matrix is

[

1 ρ

ρ 1

]

=

[

1 0

ρ
√

1 − ρ2

][

1 0

ρ
√

1 − ρ2

]

′

12

so that the draws from this bivariate distribution can be generated from independent

N(0, 1) drawsr1 andr2 as

rCar = r1

rPT = r1ρ + r2

√

1 − ρ2.
(12)

∆U = UCar− UPT (13)

ŨCar = β0 + β1Timecar + εCar

ŨPT = β1TimePT + εPT

(14)

Measurement Model

y =

{

1 (Car) if ∆U + η ≥ 0, η ∼ Logistic(0, 1)

0 (PT) otherwise.

If h∗0
Car, h∗

Car and h∗

PT are continuous latent response variables, the observed measures

related to these variables through a threshold model is defined as follows:

h0
Car =































1 if −∞ < h∗0
Car ≤ τ1

2 if τ1 < h∗0
Car ≤ τ2

3 if τ2 < h∗0
Car ≤ τ3

4 if τ3 < h∗0
Car ≤ τ4

5 if τ4 < h∗0
Car ≤ ∞

(15)

hCar =































1 if −∞ < h∗

Car ≤ τ1

2 if τ1 < h∗

Car ≤ τ2

3 if τ2 < h∗

Car ≤ τ3

4 if τ3 < h∗

Car ≤ τ4

5 if τ4 < h∗

Car ≤ ∞

(16)

hPT =































1 if −∞ < h∗

PT ≤ τ1

2 if τ1 < h∗

PT ≤ τ2

3 if τ2 < h∗

PT ≤ τ3

4 if τ3 < h∗

PT ≤ τ4

5 if τ4 < h∗

PT ≤ ∞

(17)

whereτ1, τ2, τ3 andτ4 are threshold parameters.

Likelihood function The likelihood function for observationn is given by:

Pn =

∫

εPT

∫

εCar

(

Λ1(y|εCar, εPT)P2(h
0
Car|εCar)P3(hCar|εCar)P4(hPT|εPT)f5(εCar, εPT)dεCardεPT

)

13

(18)

where

Λ1(y|εCar, εPT) =

(

1

1 + e−∆U

)y (
e−∆U

1 + e−∆U

)(1−y)

(19)

P2(h
0
Car = 1|εCar) = 1

1+e−τ1+λ1ŨCar

P2(h
0
Car = 2|εCar) = 1

1+e−τ2+λ1ŨCar
− 1

1+e−τ1+λ1ŨCar

P2(h
0
Car = 3|εCar) = 1

1+e−τ3+λ1ŨCar
− 1

1+e−τ2+λ1ŨCar

P2(h
0
Car = 4|εCar) = 1

1+e−τ4+λ1ŨCar
− 1

1+e−τ3+λ1ŨCar

P2(h
0
Car = 5|εCar) = 1 − 1

1+e−τ4+λ1ŨCar

(20)

P3(hCar = 1|εCar) = 1

1+e−τ1+λ2ŨCar

P3(hCar = 2|εCar) = 1

1+e−τ2+λ2ŨCar
− 1

1+e−τ1+λ2ŨCar

P3(hCar = 3|εCar) = 1

1+e−τ3+λ2ŨCar
− 1

1+e−τ2+λ2ŨCar

P3(hCar = 4|εCar) = 1

1+e−τ4+λ2ŨCar
− 1

1+e−τ3+λ2ŨCar

P3(hCar = 5|εCar) = 1 − 1

1+e−τ4+λ2ŨCar

(21)

P4(hPT = 1|εPT) = 1

1+e−τ1+λ3ŨPT

P4(hPT = 2|εPT) = 1

1+e−τ2+λ3ŨPT
− 1

1+e−τ1+λ3ŨPT

P4(hPT = 3|εPT) = 1

1+e−τ3+λ3ŨPT
− 1

1+e−τ2+λ3ŨPT

P4(hPT = 4|εPT) = 1

1+e−τ4+λ3ŨPT
− 1

1+e−τ3+λ3ŨPT

P4(hPT = 5|εPT) = 1 − 1

1+e−τ4+λ3ŨPT

(22)

f5(εCar, εPT) =
1

2π
√

1 − ρ2
exp

(

−
1

2(1 − ρ2)

(

ε2
Car + ε2

PT − 2ρεCarεPT

)

)

(23)

This model can be specified with Python as follows:

Import modules

from biogeme import *

from headers import *

dataFile = "maya.dat"

rho = Beta(’rho’, 0, -1, 1, 0, ’correlation’)

beta0 = Beta(’beta0’, 0, -10000, 10000, 0, ’beta 0’)

beta1 = Beta(’beta1’, 0, -10000, 10000, 0, ’beta 1’)

beta2 = Beta(’beta2’, 0, -10000, 10000, 0, ’beta 2’)

tau1 = Beta(’tau1’, 0, -10000, 10000, 0, ’tau 1’)

14

delta1 = Beta(’delta1’, 0, 0, 10000, 0, ’delta 1’)

delta2 = Beta(’delta2’, 0, 0, 10000, 0, ’delta 2’)

delta3 = Beta(’delta3’, 0, 0, 10000, 0, ’delta 3’)

lambda1 = Beta(’lambda1’, 0, -10000, 10000, 0, ’lambda 1’)

lambda2 = Beta(’lambda2’, 0, -10000, 10000, 0, ’lambda 2’)

lambda3 = Beta(’lambda3’, 0, -10000, 10000, 0, ’lambda 3’)

epsilonCar = bioNormal(’r1’)

epsilonPT = rho * bioNormal(’r1’) + (1-rho*rho)**0.5 * bioNormal(’r2’)

Ucar = beta0 + beta1 * FTTime + beta2 * FTCost / Inc + epsilonCar

Upt = beta1 * PTTime + beta2 * PTCost / Inc + epsilonPT

deltaU = Ucar - Upt

choice = (Mobil_Nov <> 1)

Pcar = 1 / (1 + exp(-deltaU))

PPT = exp(-deltaU)/(1+exp(-deltaU))

P = {0: Pcar, 1: PPT}

l = Elem(P,choice)

UtildeCar = beta0 + beta1 * FTTime + epsilonCar

UtildePT = beta1 * PTTime + epsilonPT

tau2 = tau1 + delta1

tau3 = tau2 + delta2

tau4 = tau3 + delta3

P2 = {

1: 1/(1+exp(-tau1 + lambda1 * UtildeCar)),

2: (1/(1+exp(-tau2 +lambda1 * UtildeCar)))

-(1/(1+exp(-tau1 + lambda1 * UtildeCar))),

3: (1/(1+exp(-tau3 +lambda1 * UtildeCar)))

-(1/(1+exp(-tau2 + lambda1 * UtildeCar))),

3: (1/(1+exp(-tau3 +lambda1 * UtildeCar)))

-(1/(1+exp(-tau2 + lambda1 * UtildeCar))),

4: (1/(1+exp(-tau4 +lambda1 * UtildeCar)))

-(1/(1+exp(-tau3 + lambda1 * UtildeCar))),

5: 1-(1/(1+exp(-tau4 + lambda1 * UtildeCar)))

}

15

P3 = {

1: 1/(1+exp(-tau1 + lambda2 * UtildeCar)),

2: (1/(1+exp(-tau2 +lambda2 * UtildeCar)))

-(1/(1+exp(-tau1 + lambda2 * UtildeCar))),

3: (1/(1+exp(-tau3 +lambda2 * UtildeCar)))

-(1/(1+exp(-tau2 + lambda2 * UtildeCar))),

3: (1/(1+exp(-tau3 +lambda2 * UtildeCar)))

-(1/(1+exp(-tau2 + lambda2 * UtildeCar))),

4: (1/(1+exp(-tau4 +lambda2 * UtildeCar)))

-(1/(1+exp(-tau3 + lambda2 * UtildeCar))),

5: 1-(1/(1+exp(-tau4 + lambda2 * UtildeCar)))

}

P4 = {

1: 1/(1+exp(-tau1 + lambda3 * UtildePT)),

2: (1/(1+exp(-tau2 +lambda3 * UtildePT)))

-(1/(1+exp(-tau1 + lambda3 * UtildePT))),

3: (1/(1+exp(-tau3 +lambda3 * UtildePT)))

-(1/(1+exp(-tau2 + lambda3 * UtildePT))),

3: (1/(1+exp(-tau3 +lambda3 * UtildePT)))

-(1/(1+exp(-tau2 + lambda3 * UtildePT))),

4: (1/(1+exp(-tau4 +lambda3 * UtildePT)))

-(1/(1+exp(-tau3 + lambda3 * UtildePT))),

5: 1-(1/(1+exp(-tau4 + lambda3 * UtildePT)))

}

term = l * Elem(P2,PreCarSa) * Elem(P3,PstCarSa) * Elem(P4,PstPTSa)

drawIterator(’drawIter’)

rowIterator(’obsIter’, Datafile(dataFile))

prob = Sum(term,’drawIter’)

loglike = Sum(log(prob),’obsIter’)

BIOGEME_OBJECT.FORMULA = loglike

BIOGEME_OBJECT.DRAWS = 1000

16

3 Inside Biogeme

The new version of Biogeme is divided into two parts. The firstpart consists of C++ classes

and methods, and deals with the estimation algorithm. The second part consists of several

Python modules which provide modeling elements allowing the user to specify the model and

the likelihood function. Some of these modules contain predefined likelihood functions and

models that can be directly employed. This part is very modular and extensible so that the

user can develop her own Python modules to add to the existingones. Although no major

computation is performed in Python, a consistency check of the model is performed before its

actual loading.

The estimation is performed in 3 main steps as it is presentedin figure 1. First, the model

and the likelihood function are parsed from a specification file. Then, dedicated C++ code

for the model is generated, that is C++ code for the likelihood function and its derivatives.

The motivation of this step is mainly for efficiency purpose when running the optimization

procedure. Finally, the estimation itself is performed by an optimizer.

Parsing Model Specification

Tree structure

Code generation Sample

Likelihood function
Derivatives

Estimation

Figure 1: Steps of the estimation procedure in Biogeme

3.1 Parsing the model specification

The model specification file is read by the Biogeme parser which stores the likelihood function

in a tree structure representing the mathematical formulation. Each node of the tree is associ-

17

ated with one of the elements described in section 2.1. The number of the children nodes is

equal to the number of the operands involved in the corresponding operation or function. The

leaves of the tree are constant numbers and literals (parameters or variables). Hence an expres-

sion can be evaluated by setting values to literals. For instance, the likelihood function for the

logit model formulated in equation (3) is stored as illustrated in figure 2.

∑

n

ln

/

Ain +

χ6n+

χ5n...

+

χ2nχ1n

χjn ≡ *

Ajn exp

-

Vj Vi

Vj ≡ +

+

ASCj *

β1 timej

*

β2 costj

Figure 2: Tree representation in Biogeme of the likelihood function (equation (3)) associated
with the logit model in section 2.2.1

Each node is also able to provide the derivative of its associated expression. This computation is

executed recursively through the children nodes of the subtree using chain rules differentiation.

3.2 Code generation and Optimization

For the sake of efficiency, the C++ code for the likelihood function is produced from the model

specification and from a data file. The C++ code for derivatives, needed by the optimization

algorithms, is also automatically generated. This approach allows us to exploit multithreading

mechanism in programming and to take advantage of multiprocessor machines.

18

Thanks to the object-oriented design of Biogeme, each node can easily generate its correspond-

ing C++ code. Generating the code for derivatives is also straightforward since the derivative

expression is provided by the current node. Note that the computation of higher-order deriva-

tives is also possible.

Regarding the estimation part, the parameters to be estimated are indicated to the optimization

package as well as the function to be optimized and its derivatives. Three optimization algo-

rithms are implemented in Biogeme as in the previous version: CFSQP, SolvOpt, DONLP2.

Bierlaire (2003) provides more details and the comparison of execution time of these three

algorithms.

4 Status of the development

The first stable version of the new version of Biogeme is stillunder development. The specifi-

cation and the estimation of the models are being validated.As of today, most of the examples

distributed with Biogeme have been validated. The new version produces the exact same re-

sults.

The new design of Biogeme, allowing the user to define explicitly her model and the likelihood

function, implies a loss of efficiency compared with the previous version. When the models are

fully validated, we will work on the improvement of the efficiency, mainly by generating more

efficient C++ code dedicated to the model. The handling of multithreading is also in progress.

Consequently, minor change may occur in the syntax in the future.

The new design of the software opens interesting perspectives for future developments. In

particular, we can imagine creating codes in other languages for the likelihood function, like

Matlab or Gauss.

We expect this new version of Biogeme to allow us (and the research community when the

software will be packaged for distribution) to investigatenew models, including state of the art

specifications, appropriate for the complex phenomena we plan to analyze.

Acknowledgements

We are very grateful to Maya Abou Zeid for making her model anddata available to us. We

thank also Biogeme users for their continuous remarks and suggestions for improving the soft-

ware.

19

References

Abou Zeid, M. (2009) Measuring and modeling travel and activity well-being, Ph.D. Thesis,

Massachusetts Institute of Technology.

Ben-Akiva, M., D. McFadden, K. Train, J. Walker, C. Bhat, M. Bierlaire, D. Bolduc,

A. Boersch-Supan, D. Brownstone, D. Bunch, A. Daly, A. de Palma, D. Gopinath, A. Karl-

strom and M. A. Munizaga (2002) Hybrid choice models: Progress and challenges,Market-

ing Letters, 13 (3) 163–175, August 2002.

Bierlaire, M. (2003) BIOGEME: a free package for the estimation of discrete choice models,

paper presented atSwiss Transport Research Conference.

McFadden, D. (1978) Modeling the choice of residential location, in A. Karlqvist (ed.)Spatial

Interaction Theory and Residential Location, 75–96, North-Holland, Amsterdam.

Train, K. (2003)Discrete Choice Methods with Simulation, Cambridge University Press.

Http://emlab.berkeley.edu/books/choice.html.

Walker, J. L. (2001) Extended discrete choice models: integrated framework, flexible error

structures, and latent variables, Ph.D. Thesis, Massachusetts Institute of Technology.

20

	Introduction
	Model specification
	Modeling elements
	Example : Logit model and mixtures
	Model
	A simple specification
	Using loops
	Panel data

	More complex models

	Inside Biogeme
	Parsing the model specification
	Code generation and Optimization

	Status of the development
	Bibliography

