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Abstract

Discrete choice models are constantly in evolution in ttegditure. Since they enable to capture
wide range of situations, they have been widely used by relsees and also practitioners

in several fields of applications including econometricd &nansportation demand analysis.
However, estimation procedures are complicated and naiyaleasily available to researchers.

BIOGEME is a free software package for estimating by maxintidelihood a broad range of
random utility models. It can estimate particularly Muétnate Extreme Value (MEV) models
including the logit model, the nested logit model, the crossted logit model, and the network
MEV model, as well as continuous and discrete mixtures aselraodels. Biogeme has been
designed to provide modelers with tools to investigate aawatiety of discrete choice models
without worrying about the estimation algorithm itself.

In this paper, we present some new features and capabditiBeogeme. To make it more
flexible, we allow explicitly the user to specify the randomility model to be estimated and
the associated likelihood function. With simple formubais, it will be able to handle more
sophisticated models such as latent variable models tleless models, dynamic models, etc.
required by modern modeling practice, in particular in s@ortation.
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1 Introduction

Random utility models (RUM) have been intensively used Isgaechers and practitioners in
several fields of applications including econometrics aaddportation demand analysis. The
development of a great deal of new models, designed to modgblex behavioral aspects, has
characterized the research activities during the lastdéesca

The development of Biogeme (Bierlaire (2003)) has beenvat#d by the need to estimate the
parameters of these new models from real data. The firstoreo$iBiogeme, released in 2001,
was designed to estimate the models from the family of Maitate Extreme Value (MEV)
models (called “Generalized Extreme Value” models by Mafead(1978)). The version 0.7,
released in 2003, introduced random parameters in the smiastethat the parameters of mix-
tures of MEV models could be estimated. Originally desigfagdthe courses and research
at the Ecole Polytechnique Fédérale de Lausanne (EPFLJeBie is now widely used in the
research community. As of today, more than 900 persons gigee=d on the users group.

Nowadays, more complex models are being proposed and usadng\them, hybrid choice
models |(Ben-Akiveet al.| (2002), Walker|(2001)) have received a considerable abtentin
particular, the possibility to include latent variablesldatent classes into the discrete choice
framework allows to exploit psychometric data. Also, dymamodels accounting for panel
data are more and more considered (see, among many, Trdl&){20The current version
of Biogeme allows only the estimation of very simple latelaiss models (based on discrete
random variables), and of simple models with panel data.

Software development requires significant resources. i§hgy it is difficult for a software
like Biogeme to catch up with recent model developments. A&ibe in this paper a new
version of Biogeme based on a different philosophy. Thensot is divided into two parts.
The first part, implemented in C++, is taking care of the eation itself and, in particular,
of the optimization algorithms. Most of this code is adaptexhn the previous code. The
second part, implemented in Python, is taking care of theatsaahd the likelihood function.
The Python code is automatically translated into a C++ chdedomputes the loglikelihood
function and its derivatives, so that it can be fed into thinojer.

For existing models, the type of input required by the usersisentially the same as for the
former version of Biogeme: description of the parametepgcHication of the utility func-
tions, and choice of the model. Therefore, it does not necigsequire knowledge of the
Python language. But if the user knows Python, she can bdrafitall the features of this
programming language (loops, complex data structurdbeifi-else statements, etc.). And for
new models, the user can write the full specification of theleh@and the likelihood function
in Python, and use the software in the exact same way.



2 Model specification

The specification of the model with the new Biogeme is basetherfollowing idea. First,
the specification of simple models follows almost the samecgire as the previous version of
the software. Minor differences, due to the usage of thed?ythnguage, have been included
and are discussed below. But regular users of Biogeme siheuddble to use the new version
with a minimum adjustment. Second, the user can exploit tveep of the Python language
to write more complex models. A typical example is when thembar of alternatives is large,
and loops are convenient to write the specification. Finakyv models, or set of models, with
associated likelihood functions, can be added in a flexilalg tw Biogeme.

We start below by describing the main modeling elements fdtie model specification. We
then illustrate their use on a simple example and provideegipation of a latent variable
model.

2.1 Modeling elements

e Fixed parametersare the parameters of the model, that will be estimated. &ch ef
them, a statement like the following must be provided:

COST = Beta( 'COST', 0.0, -10000, 10000, O, ’'Cost param’)

where the Python variable on the left hand side can be reumsanyi future expression,
and the six arguments of tliBet a function are defined as follows:

Name of the variable (used for the reporting),

default value,

lower bound,

upper bound,

status (0 if the parameter must be estimated, 1 if it mustdiatained at its default
value by the algorithm),

6. Short description (optional, used for the reportingigX).

o s~ wwbdRE

This is exactly the same information provided in the Secfi@et a] of the current
version of the package.

e Variables are the headers of the data file, that is, the explanatorghlas of the model.
The statement

dataFile = "sanpl e. dat"

defines all the headers in the data file as Python entitiesc#mabe used in further ex-
pressions. Clearly, any transform can be applied to thesablas before being used in
the specification itself, such as



| ogCost = | og(cost).
Biogeme also creates an additional variables named
_rowd__

which contains the number of the observation in the datadikting counting from 0.
Note that the data file must have exactly the same format dseiriormer version of
Biogeme.

Random numbersBiogeme handles two types of random numbers. The first tyle fo
lows a normal distribution with mean 0 and variance 1, thati$,1). The second
follows a uniform distribution betweer1 and1, that isU[—1, 1]. The syntax is the
following:

bi oNormal (" aNormal ’,”  _rowid_ ')

defines a normal distribution calledNor mal . The software will generate a set of draws
from this distribution for each different value of the idiéier mentioned as the second
argument. In this example, the keywordr owm d__ refers to the row number in the

data file, meaning that a different set of draws will be geteer&or each row.

bi oUni forn(’ aUni form ,’individualld)

defines a uniform distribution if-1, 1] calledaUni f or msuch that a set of draws is
generated for each individual in the sample, not each ob8en: This feature is partic-
ularly used in the context of panel or stated preference ddge that if aj0, 1] uniform
distribution is needed, it is obtained from the followingrisform:

(1 + bioUniform(’aUniform ,’individualld)) / 2

A wide variety of random parameters can be derived from thasdom numbers. For
instance,

BETALNORMAL = BETAL + SIGVAL * bioNormal (" aNormal’,’ __rowid_’)

defines a random parameter, normally distributed, with nB&&PA1 and standard devi-
tion SI GVAL, where these two parameters have been properly definedheifiumction
Bet a as described above.

zeroOne = (1 + bioUniform(’aUniform ,’1d)) / 2
BETA2EXTREME = A - B + | og(-1og(zeroOne))

defines a random parameter following an extreme value bligtan with location param-
eterA and scale paramet8t

Elements for buildingnathematical expressionsare also provided. These elements
consist of common and expanded mathematical operatorsiactdns:

1. Numerical operations- (unary minus)+ (addition),- (substraction)* (multi-
plication),/ (division),abs (absolute value), og (natural logarithm)exp (expo-
nential),x * (power)



2. Boolean operations& (and),| (or), < (less than)<= (less or equal to}; (greater
than),>= (greater or equal to}= (equal to),<> (not equal to).

3. Element of a dictionary: there are typical cases whereraéexpressions are de-
fined (like the utility functions for each alternative), lmrtly one of them is relevant
in a given expression (typically, the utility function cesponding to the chosen al-
ternative). We call the set of expressions a “dictionary’'iogéme provides the
functionEl en( di cti onary, expression) which enables to reference the
item associated to the keyxpr essi on in di cti onary. In Python, a dictio-
nary is a data structure organized like a setkef,(value) pairs, where keys must
be unique. The following example presents how to get théyblf the chosen

alternative:

vV = {1 Vi,
2. V2,
3. V3,
4: V4,
5. V5,
6: V6}

Vchosen = El em(V, choi ce)

wherechoi ce is an expression that returns one of the values of the ketyighia
2,3,4,50r6,andV1, V2, V3, V4, V5 andV6 have been specified earlier.

4. Iterator@ are important components that allow to iterate on datageifom the
sample file or from generated draws for random number. There8&inds of
iterator:

— 'Row’ iterator: the element referenced by this iterator ieator of numbers,
typically a row from the data file;

— 'Meta’ iterator: defines an iterator on another iteratorisigermits to describe
a hierarchical structure of iterators and allows to modgiression such as
Yo 1L, > s p(n,0,k). This is particularly useful in the specification of the
loglikelihood function of models for panel data.

— 'Draw’ iterator: iterates through the draws of random nunsband is useful
for the computation of integrals by simulation.

The following declarations describe the construction ofhed@erator object in
Python

row terator(iteratorName, dataStructure,indexVari abl e)
net alterator(iteratorNanme, dataStructure,indexVari abl e)

The 3 arguments of these functions are respectively:

LAt the time this paper is written, this feature is being tdstad improved. Its syntax may slightly vary in the
future, but the logic will be as described in the paper.



(@) i t er at or Nane: name of the iterator;

(b) dat aSt ruct ur e: data structure that the iterator is iterating on. It can be
either the objecbhat af i | e(’ nyfi |l e. dat’ ), when the iterator scans the
sample file, or a string of characters with the name of a 'mi&tgator.

(c) i ndexVar i abl e (optional) is the name of the column in the data file where
the identifier on which the iterator iterates is defined. Taly, row d
or the identifier of an individual for panel data.

The draw iterator is defined & awl t er at or (i t er at or Nane) .

5. FunctionsSum(termiterator) and Prod(termiterator) express

summation and product of terms (EQ.;, z; or Hj x;). i terator is the name
of the iterator used to access the successive values of tiadhes in the database,
making possible the evaluation ber mfor each referenced elemertter mis a
general expression. It can therefore include other sunomati product operation
in a recursive way. See examples below.

2.2 Example : Logit model and mixtures

A specification of a logit model is presented in this sectiéinst, the specification of the model
is described. Then the corresponding specification in Ryihgiven as well as some variants
to illustrate the use of loops and model for panel data.

2.2.1 Model

Assume there are 6 alternatives in the choice set for eadVvidodl. The deterministic part of
the utility functions is defined as follows :

Vi
Vs
Vs
Vi
Vs
Vs

ASC, + (3 x time; + (35 x cost
ASGC, + 3 x time, + (3, x cost
ASGC; + 3, * time; + (3, * cOSt
ASC, + 3, * time, + (3, * cOSY,
ASGC; + 3 * time; + (3, x cost
ASGC; + 31 * timeg + (35 * COSE

where ASG = 0 (fixed value). ASG ¢ € {2,...,6}, ; and 3, are the parameters that must
be estimated. timeand cost, j € {1,...,6} are the explanatory variables. The probability of
choosing alternativeby individualn within the choice sef’, is

Bu(i|Cy)

Amevi
S @
> i1 Ajnes



4 — 1 if alternativei belongs taC,,,
" 0 otherwise

For numerical reasons, it is useful to consider the equitdtemulation

Ainevi Vi Am

P,(i|Cy) = = _
Z?:1 Ajpeli=Ve 2]6-:1 Ajneta=V

(2)

First, it is less likely that the argument of the exponentidl generate an overflow. Second,
we save the computation of an exponential at the numeratwe. Idglikelihood for a sample
with IV observations is given by

N
L= P, (in|Cp), 3)

n=1

wherei,, is the alternative chosen by individual

2.2.2 A simple specification

The full specification in Python of this model is written beloComments begin with #, so
that characters following this symbol on the same line wdlignored by Biogeme. In this
specification, we assume that the filsanpl e. dat’ contains the data in the appropriate
format.

# I nmport nodul es
from bi ogene i nport =

from headers inport =
fromlogit inmport =
fromloglikelihood inport =

# File containing a sanple
dataFile = "sanpl e. dat"

# Paraneters

ASCl1 = Beta( 'ASCl’, 0.0, -10000, 10000, 1, 'Cte for alt. 1)
ASC2 = Beta( 'ASC2’, 0.0, -10000, 10000, O, 'Cte for alt. 2")
ASC3 = Beta( 'ASC3', 0.0, -10000, 10000, O, 'Cte for alt. 3)
ASC4 = Beta( 'ASC4', 0.0, -10000, 10000, O, 'Cte for alt. 4)
ASC5 = Beta( 'ASC5', 0.0, -10000, 10000, O, "Cte for alt. 5')
ASC6 = Beta( 'ASC6’', 0.0, -10000, 10000, O, 'Cte for alt. 6")



BETAl
BETA2

Beta( ' BETA1', 0O, -10000, 10000, O, '\beta_1)
Beta( ' BETA2', 0, -10000, 10000, O, ’'\beta_2)

# Uility. Note that it is not necessary anynore to wite ASC2 * one.

V1l = ASCl1 + BETALl * timel + BETA2 * costl
V2 = ASC2 + BETALl * time2 + BETA2 * cost2
V3 = ASC3 + BETALl * tinme3 + BETA2 * cost3
V4 = ASC4 + BETAL * tinmed4 + BETA2 * cost4
V5 = ASC5 + BETAL * tinme5 + BETA2 * cost5
V6 = ASC6 + BETALl * tine6 + BETA2 * cost6

# Dictionary containing the utilities. The index nmust correspond
# to the values that the choice variable nay take
VvV = {1: Vi,
2: V2,
V3,
V4,
V5,
V6}

S

# Dictionary containing the definition of availability.
# Here, they are taken directly fromthe data file
av = {1. avli,
2. avz,
av3,
av4,
avb,
av6}

AN

# Model
prob = logit(V, av, Choi ce)

# Li kel i hood function

# Definition of the iterator

rowmterator(’ obslter’, Datafil e(dataFile))

# Logli kelihood function

Bl OGEME_OBJECT. FORMULA = Sun(| og(prob),’ obslter’)

prob = logit(V, av, choi ce) specifies the model to be estimated. This Python function
implements equation2) and is defined as follows :

def logit(V,availability, choice)



chosen

den =

= El enm(V, choi ce)

0

for i,vin V.iteritens()

den += availability[i]

a = Elem(avail ability, choice)
P =a/ den
return P

* exp(v-chosen)

We refer the interested reader to the Python documentgbiphhon. or g) to decrypt this
piece of code.

2.2.3 Using loops

Assume that the population is segmented, and we want a jagicifi where one parameter is
segment-specific. For the sake of the example, we assumthéhatentifier of the individual
characterizes the group she belongs to in the following way:

Group 0: ids from 0 to 20,

Group 1: ids from 21 to 100,
Group 2: ids from 101 to 150,
Group 3: ids from 151 and above.

Groups may be defined based on income, age, or any approgoiciteeconomic character-
istics. The following specification involves the use of Isap Python, and should be self-

explanatory:

BETAL = {}
BETAL[ 0]
BETAL[ 1]
BETAL[ 2]
BETAL[ 3]

group = {}
gr oupl[ 0]
group[ 1]
groupl[ 2]
groupl[ 3]

Beta( ' BETA time_g0', 0, -10000,
Beta( ' BETA time_gl', 0, -10000,
Beta( ' BETA tinme_g2', 0, -10000,
Beta( ' BETA tinme_g3', 0, -10000,

((1d >= 0) & (1d <= 20))
((1d >= 21) & (1d <= 100))
((1d >= 101) & (1d <= 150))
(1d >= 151)

10000,
10000,
10000,
10000,

oo

"beta tine group 0')
"beta tine group 1)
"beta tine group 2')
"beta tine group 3')



V1l = ASCl + BETA2 * cost1l
for i inrange(4): # <=>for i in[0,1,2,3]
V1 += BETAL[i] * group[i] * tinmel

By convention, the result of a logical expression is 1 if tkpression is true, and 0 otherwise.
Therefore, for each individual, exactly one term involvirignel is non-zero.

2.2.4 Panel data

We illustrate here the use of iterators to specify a modgbéorel data. Assume again that there
are 6 alternatives as above. The utility functions are ndimee as:

Vine = ASC; + (1 * timey,; + B * COSty,

Vane = ASGC, + [y * timey,,, + B2 * COSby, + &p
Vane = ASC;+ [y * timey,,, + B2 * COSy, + &p
Vine = ASCy+ [y * timey,; + B2 * COSly,; + &,
Visne = ASGCs + [y * times,,; + B2 * COSky,: + &p
Vet = ASGCs + [y * times,,, + B2 * COSky + &p

where¢,, is an error component distributed across individuals (fosteovations). 1, were
known, the probability for individuab to make choiceé,,; at timet is given by the logit model:

. Aimn e‘/intnt
Pnt(@nt‘@m) = 72 /I tev . (4)
j AgntCint

The probability that this individual makes the sequencéhoiaces at each time period, knowing
&,, IS given by

Po({in, - inr}én) = ﬁ Prt(int|&n)- ®)
t=1

As &, is distributed, we have

Pultin, i) = [ Pl fur YO € ©)

wheref is the probability density function @f. This is approximated by

Po({ins - vinz)) & % S Pulfint, - inr 6, )
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where¢, are random draws from the appropriate distribution. Thdiketjhood function is
therefore

L= log Pi({int, .- inr}). (8)
If we assume that, follows a normal distribution of mean 0 and variande the above model
can be specified as follows.

from bi ogene i nport =

fromlogit inmport =

from headers inport =

dataFile = "sanpl e. dat™

ASCl1 = Beta( 'ASCl’, 0.0, -10000, 10000, 1, "Cte for alt. 1)
ASC2 = Beta( 'ASC2’, 0.0, -10000, 10000, O, "Cte for alt. 2)
ASC3 = Beta( 'ASC3', 0.0, -10000, 10000, O, "Cte for alt. 3)
ASC4 = Beta( 'ASC4', 0.0, -10000, 10000, O, "Cte for alt. 4")
ASC5 = Beta( 'ASC5', 0.0, -10000, 10000, O, "Cte for alt. 5)
ASC6 = Beta( 'ASC6', 0.0, -10000, 10000, O, "Cte for alt. 6")
BETA1 = Beta( 'BETA1’, 0, -10000, 10000, O, '\beta_1")
BETA2 = Beta( 'BETA2', 0, -10000, 10000, O, '\beta_2')
SIGVA = Beta( 'SIGW, 1.0, -10000, 10000, O, '\sigma')

#1d is the identifier of the individual. Draws will be
# generated for each individual, and not for each observation.

ERRORCOMP = SIGVA * bioNormal (" aNormal ', 1d")
V1 = ASCl1 + BETAL * x11 + BETA2 * x12
V2 = ASC2 + BETAl * x21 + BETA2 * x22 + ERRORCOWP
V3 = ASC3 + BETAl * x31 + BETA2 * x32 + ERRORCOWP
V4 = ASC4 + BETALl * x41 + BETA2 * x42 + ERRORCOWP
V5 = ASC5 + BETAl * x51 + BETA2 * x52 + ERRORCOWP
V6 = ASC6 + BETAl * x61 + BETA2 * x62 + ERRORCOWP
vV ={1l. Vi,

2: V2,

3. V3,

4: V4,

5: V5,

6: V6}
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av = { avl,
avz,
av3,
av4,
avb,

av6}

Qa0 wNR

netalterator(’ personlter’,Datafile(dataFile), 1d)
row terator(’ panel Goslter’,’ personlter’,’” _rowd__")
draw terator (' drawiter’)

prob = logit(V, av, choice)

condProbl ndiv = Prod(prob,’ panel Qoslter’)

probl ndiv = Sun(condProblndiv, dramter’)

| oglikelihood = Sun(l og(problndiv),’ personlter’)
Bl OGEME_OBJECT. FORMJULA = | ogl i kel i hood

Bl OGEME_OBJECT. DRAWS = 1000

2.3 More complex models

We present here the specification of a complex model propbgatbou Zeid (2009). It in-
cludes latent variables with indicators, ordered logit endelated error components. We refer
the reader to the thesis for the description and motivatidh@model. For information, the
model has been translated into Python in less than 20 minutes

Structural Model

. Costar
= T .
Ucar ﬁO +ﬁl |meCar+ﬁ2|ncome+ Ecar (9)
. Cosb
Upt = B Timept + (3 Lt epr. (10)

Income

0 1
car | LN N R B I (11)
EPT 0 1% 1

The Cholesky decomposition of the variance-covarianceixiat

L s )
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so that the draws from this bivariate distribution can beegated from independent
N(0,1) drawsr;, andr; as

TCar = T (12)

reT = T1p+r2\/1—p2.
AU = Ucar — Upr (13)

0Car = ﬁo + ﬂlTimecar‘F Ecar (14)
Upr = [iTimepr + cpr

Measurement Model

_J 1 (Can if AU +n > 0,1 ~ Logistic(0,1)
Yo (PT) otherwise

If he, h&, and hp are continuous latent response variables, the observedumesa

Car

related to these variables through a threshold model isetbfis follows:

;

1 if —o0o < R, < 7
2 if 1< h*C%r < To
hRa=4 3 if n < bl < = (15)
4 if T3 < h*C(z)ar < 7
[ 5 if < hY, <
(1 if —0 < hér < 7
2 if 1< *Car < T
hea=< 3 if 1w < hiy < T3 (16)
4 if T3 < h*Car < T4
(5 0f T < Ry £ o0
(1 if =00 < hiy < 7
2 if 1< h;T < To
her=14 3 if 1w < hi < (17)
4 if T3 < h;;T < Ty
[ 5 if T, < hipr < o0

wherer, 75, 73 andry are threshold parameters.
Likelihood function The likelihood function for observatiomis given by:

P, = / / (A1 (ylecar p) Po(headecar) Ps(healecar) Pa(hetlept) f5(ecar ep1)decadepT)
EPT Y ECar

13



where

Al(y\ﬁ(:ar, &TPT) = (

Py(hger = 1lecar)
Py(hgar = 2|ecar)
Py(hgar = 3lecar)
Py(hgar = 4lecar)
Py(

hOCar - 5|5Car)

Ps(hcar = 1|ecar)
Ps(hcar = 2|ecar)
Ps(hcar = 3|ecar)
Ps(hcar = 4|ecar)
Py(

hcar = 5|5Car)

Py(hpr = 1|epr)
Py(hpt = 2|epT)
Py(hpt = 3lepr)
Py(hpt = 4lept)
Py(hpt = 5|epT)

f5(5Cara €PT) = m €xp

1
1+e~T1HA1 Ucar
1

1 Yy o~ AU (1-y)
1+ e—AU) <1 + e—AU)

_ 1

1+e*7'2+>‘10Car
1

1+e*7'1+>‘10Car
1

1+e~T31HA1 Ucar
1

1+e*7'2+>\100ar
1

14+e— T4+ M Ucar
1

1
14e 71 +x20car
1

14+e— "3+ M Ucar

1+5*"4+A10Car

- 1

1+e—72+x200ar
1

1+e 71 +X2Ucar
1

1+e— T3+ 2Ucar
1

1+e— T2+ 2Ucar
1

1+e—f4+k2ﬁcar
1

1
1+e~ 71 +)‘30F’T
1

1+e—f3+k2ﬁcar

1+e_"'4+A20Car

1

14e—m2+330pT
1

14e—T1+330pT
1

14e—3+33UpT
1

14e—m2+33UpT
1

1+e—‘r4+)\30pT
1

1

1+e—73+)\30pT

1+4e—Ta+A30pT

1
(s bt -2

This model can be specified with Python as follows:

# I nmport nodul es

from bi ogene i nport =
from headers inport =

dataFile = "maya. dat"

rho = Beta( 'rho’, 0, -1,
bet a0 Beta( ’'betaO', O,
bet al Beta( 'betal, O,
beta2 = Beta( ’'beta2’, O,

1, 0, 'correlation’)

-10000, 10000, O, ’'beta 0')
-10000, 10000, O, ’'beta 1')
-10000, 10000, O, ’'beta 2')

taul = Beta( 'taul’, O, -10000, 10000, O, "tau 1')

14
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(19)

(20)

(21)

(22)

(23)



deltal Beta( 'deltal, 0, 0, 10000, O, 'delta 1')
delta2 Beta( 'delta2’, 0, 0, 10000, 0O, 'delta 2")
del ta3 Beta( 'delta3, 0, 0, 10000, 0O, 'delta 3")
| ambdal = Beta( ’'|anbdal’, 0, -10000, 10000, O, ’'lanmbda 1')
| ambda2 Beta( 'l anbda2’, 0, -10000, 10000, O, ’lanbda 2')
| anmbda3 Beta( 'l anbda3’, 0, -10000, 10000, O, ’lanbda 3')

epsilonCar = bioNormal ("r1")
epsilonPT = rho * bioNormal ("r1") + (1-rho*xrho)**0.5 » bioNormal ('r2")

Ucar = betaO + betal = FTTinme + beta2 = FTCost / Inc + epsilonCar
Upt = betal » PTTinme + beta2 » PTCost / Inc + epsilonPT

del taU

Ucar - Upt

choi ce (Mobil _Nov <> 1)

Pcar = 1/ (1 + exp(-deltal))
PPT = exp(-deltal)/ (1+exp(-deltal))

-
1

{0: Pcar, 1. PPT}
El em( P, choi ce)

UtildeCar = beta0 + betal » FTTinme + epsilonCar
Util dePT = betal = PTTine + epsilonPT

tau2 = taul + deltal
tau3 = tau2 + delta?
tau4 = tau3 + delta3
P2 = {

1. 1/ (1+exp(-taul + lanmbdal = Util deCar)),

2: (1 (1+exp(-tau2 +lanmbdal + Util deCar)))
-(1/ (1+exp(-taul + | anbdal = Uil deCar))),

3: (1 (1+exp(-tau3 +lanmbdal + Util deCar)))
-(1/ (1+exp(-tau2 + | anbdal = Uil deCar))),

3: (1 (1+exp(-tau3 +lanmbdal + Util deCar)))
-(1/ (1+exp(-tau2 + | anbdal = Uil deCar))),

4. (1/(1+exp(-taud +l anbdal = Uil deCar)))
-(1/ (1+exp(-tau3 + lanbdal » UtildeCar))),

5: 1-(1/(1+exp(-taud + lanbdal = Uil deCar)))
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1. 1/ (1+exp(-taul + | anbda2 = Util deCar)),
(1/ (1+exp(-tau2 +l anbda2 » Util deCar)))
-(1/ (1+exp(-taul + | anbda2 = Uil deCar))),

3: (1/(1+exp(-tau3 +lambda2 + Util deCar)))
-(1/ (1+exp(-tau2 + | anbda2 » UtildeCar))),

3: (1/(1+exp(-tau3 +l anbda2 = Util deCar)))
-(1/ (1+exp(-tau2 + | anbda2 + UtildeCar))),

4: (1/ (1l+exp(-taud +l anbda2 = Uil deCar)))
-(1/ (1+exp(-tau3 + lanbda2 + UtildeCar))),

5: 1-(1/(1+exp(-taud + lanbda2 = Uil deCar)))

1. 1/ (1l+exp(-taul + [anmbda3d = Util dePT)),

2: (1 (1+exp(-tau2 +l anbda3 » Util dePT)))
-(1/ (1+exp(-taul + | anbda3 = Uil dePT))),

3: (1/(1+exp(-tau3d +lanbda3 » Util dePT)))
-(1/ (1+exp(-tau2 + | anbda3 = Uil dePT))),

3: (1/(1+exp(-tau3d +lanbda3 » Util dePT)))
-(1/ (1+exp(-tau2 + | anbda3 = Uil dePT))),

4. (1/ (1+exp(-taud +l anbda3 + Uil dePT)))
-(1/ (1+exp(-tau3 + lanbda3 » Util dePT))),

5: 1-(1/(1l+exp(-taud + [anbda3 = Util dePT)))

term=1 * Elem(P2,PreCarSa) * El en(P3, Pst Car Sa) * El em( P4, Pst PTSa)

draw terator (' drawiter’)
rowmterator(’obslter’, Datafile(dataFile))

prob = Sum(term ' drawiter’)

| ogli ke = Sunm(l og(prob),’ obslter’)
Bl OGEME_OBJECT. FORMULA = | ogl i ke
Bl OGEME_OBJECT. DRAWS = 1000
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3 Inside Biogeme

The new version of Biogeme is divided into two parts. The fu@tt consists of C++ classes
and methods, and deals with the estimation algorithm. Thkergkpart consists of several
Python modules which provide modeling elements allowirggubker to specify the model and
the likelihood function. Some of these modules contain gfiedd likelihood functions and

models that can be directly employed. This part is very madahd extensible so that the
user can develop her own Python modules to add to the existieg. Although no major

computation is performed in Python, a consistency checkh@htodel is performed before its
actual loading.

The estimation is performed in 3 main steps as it is presentéidure[1. First, the model
and the likelihood function are parsed from a specificatis firhen, dedicated C++ code
for the model is generated, that is C++ code for the likelthéunction and its derivatives.
The motivation of this step is mainly for efficiency purposbem running the optimization
procedure. Finally, the estimation itself is performed hyoatimizer.

Parsing Model Specification
Code generation

Likelihood function
Derivatives

U

Estimation

Figure 1: Steps of the estimation procedure in Biogeme

3.1 Parsing the model specification

The model specification file is read by the Biogeme parserhtiores the likelihood function
in a tree structure representing the mathematical fornamaEach node of the tree is associ-
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ated with one of the elements described in sedtioh 2.1. Thebeu of the children nodes is
equal to the number of the operands involved in the corredipgroperation or function. The
leaves of the tree are constant numbers and literals (péeesrar variables). Hence an expres-
sion can be evaluated by setting values to literals. Foants, the likelihood function for the
logit model formulated in equatiohl(3) is stored as illuttdhin figure 2.

(=) D o
(n) (4n) (o)
0
(4n)

Figure 2: Tree representation in Biogeme of the likelihoadiction (equation (3)) associated
with the logit model in section 2.2.1

Each node is also able to provide the derivative of its assediexpression. This computation is
executed recursively through the children nodes of thergahitsing chain rules differentiation.

3.2 Code generation and Optimization

For the sake of efficiency, the C++ code for the likelihooddlion is produced from the model
specification and from a data file. The C++ code for derivativeeeded by the optimization
algorithms, is also automatically generated. This appgr@dows us to exploit multithreading
mechanism in programming and to take advantage of multgssar machines.

18



Thanks to the object-oriented design of Biogeme, each naxdeasily generate its correspond-
ing C++ code. Generating the code for derivatives is alsoghtforward since the derivative
expression is provided by the current node. Note that thepatation of higher-order deriva-
tives is also possible.

Regarding the estimation part, the parameters to be estihaaé indicated to the optimization
package as well as the function to be optimized and its derés Three optimization algo-
rithms are implemented in Biogeme as in the previous versZiFSQP, SolvOpt, DONLP2.
Bierlaire (2003) provides more details and the comparisoexecution time of these three
algorithms.

4  Status of the development

The first stable version of the new version of Biogeme is stililer development. The specifi-
cation and the estimation of the models are being validateaf today, most of the examples
distributed with Biogeme have been validated. The new garproduces the exact same re-
sults.

The new design of Biogeme, allowing the user to define explicer model and the likelihood
function, implies a loss of efficiency compared with the jpoerg¢ version. When the models are
fully validated, we will work on the improvement of the effecicy, mainly by generating more
efficient C++ code dedicated to the model. The handling ottithuéading is also in progress.
Consequently, minor change may occur in the syntax in thedut

The new design of the software opens interesting persgacfwr future developments. In
particular, we can imagine creating codes in other languégethe likelihood function, like
Matlab or Gauss.

We expect this new version of Biogeme to allow us (and thearebecommunity when the
software will be packaged for distribution) to investigatav models, including state of the art
specifications, appropriate for the complex phenomena amrtpl analyze.
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