Behavioural modeling of dynamic facial expression recognition

Thomas Robin, Michel Bierlaire, Javier Cruz

28th august 2008

The context

<u>Applications:</u> Driver's attention state; Smart meeting rooms; Human-Machine interfaces.

Objectives

- Model the facial expression recognition made by a person looking at a face video sequence
- Model explicitly the **dynamic process**
- Estimate the model on **behavioural** data (not classification)

Outline

- . Introduction
- . Features extraction
- Data: Video data bases
 - Internet survey
- Model: State transition process
 - Measurement equation
 - Likelihood function
- . Conclusion and Perspectives

<section-header>

Output:

• <u>Static version of the work</u>:

M.Sorci, M.Bierlaire, J-P.Thiran, J.Cruz, Th.Robin and G.Antonini (2008). Modeling human perception of static facial expressions, 8th IEEE Int'l Conference on Automatic Face and Gesture Recognition.

Images: Cohn-Kanade databaseBehavioral data: internet survey

- Inspired from dynamic model:
 - Hidden Markov Model
 - State transition processMeasurement equation

Choudhury, C. F. (2007). Model Driving Decisions with Latent Plans, PhD thesis, Massachusetts institue of technology.

- Latent decisions
- Estimation by likelihood maximization

Features extraction: Active Appearance Model

Features extraction: Active Appearance Model FACS

- In 1978 Ekman and Friesen developed the Facial Action Coding System
- Mesurement units: "Action Units" (Aus)
 - AUs are contractions or relaxations of one or more muscles
 - 46 AUs account for changes in facial expression
 - 12 AUs describe changes in gaze direction and head orientation

SP-0R

The FACS has become the leading standard for measuring facial expressions

Features extraction: Active Appearance Model FACS

AU1	AU2	AU4	AU5	AU6	AU7
10 0	66	26	00		
Inner Brow Raiser	Outer Brow Raiser	Brow Lowerer	Upper Lid Raiser	Cheek Raiser	Lid Tightener
AU9	AU10	AU12	AU15	AU16	AU17
Chief I	and a	de.	3.0	(E)	E.
Nose Wrinkler	Upper Lip	Lip Corner	Lip Corner	Lower Lip	Chin Raiser
	Raiser	Puller	Depressor	Depressor	
AU20	AU23	AU24	AU25	AU26	AU27
3	-	3	Ē	ē	
Lip Stretcher	Lip Tightener	Lip Pressor	Lips part	Jaw Drop	Mouth Stretch

Features extraction: Active Appearance Model EDU

 Expression Descriptive Units by Antonini, Sorci, Bierlaire and Thiran in « Discrete Choice Models for Static Facial Expression Recognition »

	1	a 1 5	× 14	*** 2 20 -21 - 22	10
145		13	42	- 26 - 27 - 2	/**
	81 88	T.M.	-10-10	21 /22	54
			-20 -5	1	

EDU1	$\frac{lew+rew}{leh+reh}$	EDU8	$\frac{leh+reh}{lbh+rbh}$
EDU2	$rac{lbw}{lbh}$	EDU9	$\frac{lew}{nw}$
EDU3	$rac{rbw}{rbh}$	EDU10	$\frac{nw}{mw}$
EDU4	$rac{mw}{mh}$	EDU11	EDU2 / EDU4
EDU5	$\frac{nh}{nw}$	EDU12	EDU3 / EDU4
EDU6	$rac{lew}{mw}$	EDU13	EDU2 / EDU10
EDU7	$\frac{leh}{mh}$	EDU14	EDU3 / EDU10

Features extraction: Active Appearance Model Texture

Data: internet survey

- Survey conducted at the address below(English, French, Italian, Spanish): http://transp-or2.epfl.ch/videosurvey/
- Respondents have to: | create an account

Socioeconomics attributes

- label some video sequences with expressions
 observations
- 2 databases of video are used: | Cohn-Kanade

- Technical University Munich (TUM)

Data: video database

- The Cohn-Kanade database
 - Actors **playing** expressions, according to the Facial Action Coding System (FACS)

55 sequences, 11 subjects

Data: video database

- The Technical University Munich database (TUM)
 - Students faced to a video, natural expressions recorded

399 sequences, 18 subjects

Data: socio-economics

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Data: labels

Model: introduction

• Dynamic evaluation of the video sequence

Video sequence labeled with one expression

- \cdot (1) : modeling the dynamic evaluation
 - ➡ The state transition process
- $(1) \rightarrow (2)$: Link between dynamic evaluation and label The measurement equation

- Modeling of the dynamic evaluation of a video sequence
 - i: expression
 - n: respondent
 - N: total number of respondents
 - O_n : number of video sequences labelled by the respondent n
 - t: frame of a video sequence
 - o: video sequence
 - T_o : total number of frames in the video sequence o

• The video sequence **o** watched by the respondent **n**:

• A vector of utility functions $V_{t,o,n}$ associated to the state $S_{t,o,n}$

• Model the transition between the states $\{s_{t,o,n}\}_{t \leq T_o}$ $V_{t,o,n} = \{v_{1,t,o,n}, v_{2,t,o,n}, ..., v_{E,t,o,n}\}$

• $\hat{V}_{t,o,n}$: specific vector of "**static**" utility functions capturing the respondent perception of the frame *t*

$$\hat{V}_{t,o,n} = \{ \hat{v}_{1,t,o,n}, \hat{v}_{2,t,o,n}, ..., \hat{v}_{E,t,o,n} \}$$

$$\bigvee V_{t,o,n} = \sum_{a=1}^{\infty} A^{t-a} V_{a,o,n} + \xi_n$$

- Remarks: $\begin{vmatrix} A \\ in \\ R^{E \times E} \end{vmatrix}$ can be set diagonal and universal to ease the model identification
 - ξ_n : depends only on the respondent, we supposed it $N(0, \sigma)$ distributed

• Association of a random utility $u_{i,t,o,n}$ for each frame *t* of the video sequence *o* watched by the respondent *n* and for each expression *i*

- $P_{o,n}(i/t, \xi_n)$: probability for the respondent n of choosing the expression *i* in the frame *t* of the video sequence *o*, given ξ_n
- . $\varepsilon_{i,t,o,n} \sim \mathsf{EV}(0,\mu)$: mixture logit for panel data

$$P_{o,n}(i/\xi_n) = \frac{\exp(\nu_{i,t,o,n}(\xi_n))}{\sum_{j=1}^{E} \exp(\nu_{j,t,o,n}(\xi_n))}$$

How link $P_{o,n}(i)$ with $P_{o,n}(i/t, \xi_n)$?

- $P_{o,n}(i)$: probability for the respondent *n* of choosing the expression *i* to label the video sequence *o*
- $P_{o,n}(t)$: probability for the respondent *n* of making his final expression choice for the video sequence *o*, when watching at the frame *t*
- $f(\xi_n)$: multivariate density function of ξ_n

$$P_{o,n}(i) = \int \sum_{t=1}^{T_o} P_{o,n}(i/t,\xi_n) P_{o,n}(t) f(\xi_n) d\xi_n$$

faced to the frame *t*

• $P_{o,n}(t)$: probability for the respondent *n* of making his final expression choice for the video sequence *o*, when watching at the frame *t*

• $\overline{v}_{t,o,n}$: utility measuring the dynamic of the frame *t* of the video sequence *o*, watched by the respondent *n*

$$P_{o,n}(t) = \frac{exp(\overline{\nu}_{t,o,n})}{\sum_{a=1}^{T_o} exp(\overline{\nu}_{a,o,n})}$$

$$\rightarrow$$
 Derivatives of features in $\overline{v}_{t,o,n}$

Model: likelihood function

- Estimation made by likelihood maximization
- C_{i,o,n}: indicator of choice equals to one if respondent *n* chose to label the video sequence *o* with the expression *i*

$$l = \prod_{n=1}^{N} \prod_{o=1}^{O_n} P_{o,n}(i)$$

$$l = \prod_{n=1}^{N} \prod_{o=1}^{O_n} (\prod_{i=1}^{E} \int \sum_{t=1}^{T_o} P_{o,n}(i/t,\xi_n) P_{o,n}(t) f(\xi_n) d\xi_n^{c_{i,o,n}})$$

Model: likelihood function

N

 \cap

$$l = \prod_{n=1}^{N} \prod_{o=1}^{O_n} P_{o,n}(i)$$

$$l = \prod_{n=1}^{N} \prod_{o=1}^{O_n} (\prod_{i=1}^{E} \int_{t=1}^{T_o} P_{o,n}(i/t,\xi_n) P_{o,n}(t) f(\xi_n) d\xi_n)$$

$$l = \prod_{n=1}^{N} \prod_{o=1}^{O_n} (\prod_{i=1}^{E} \int_{t=1}^{T_o} \frac{exp(v_{i,t,o,n}(\xi_n))}{\sum_{j=1}^{E} exp(v_{j,t,o,n}(\xi_n))} \frac{exp(\overline{v}_{t,o,n})}{\sum_{a=1}^{T_o} exp(\overline{v}_{a,o,n})} f(\xi_n) d\xi_n^{c_{i,o,n}})$$

Model: specifications

- Discrete Choice Model framework
- Attributes

\$\hfysic{\phi_{t,o,n}}{\phi_{t,o,n}}\$: FACS, EDU, Texture, Socio-economics
 M. Sorci et al, "Static facial expression recognition"

- $\overline{\nu}_{t,o,n}$: **Derivatives** of features
- measure the frame dynamic

Conclusions and Perspectives

- Conclusion:
 - database of face video annotations

 - new model frameworkestimation by likelihood maximization
- <u>Perspectives</u>:
 - implementation of the likelihood maximization
 - model estimation: find a satisfactory specification
 - model validation: measure the prediction power

Conclusions and Perspectives

- Conclusion:
 - database of face video annotations

 - new model frameworkestimation by likelihood maximization
- <u>Perspectives</u>:
 - implementation of the likelihood maximization
 - model estimation: find a satisfactory specification
 - model validation: measure the prediction power

Thank you for your attention

Data: data file

• Face video annotations data base
Data file for model estimation

- $s_{t,o,n}$: state associated with the frame t of the video sequence o watched by the respondent nI
- \$\hat{V}_{t,o,n}\$: vector of utilities characterizing the frame t of the video sequence o for the individual n (dimension E)
- $V_{t,o,n}$: vector of utilities associated with the state $s_{t,o,n}$ (dimension E)
- ξ_n : vector of error terms specific to the individual n, interfering in the transition process (dimension E)
- σ : vector of standard errors of ξ_n (dimension E)
- A: squared appreciation matrix of dimension $E \times E$ associated to the respondent n faced to the video sequence o

- Link the observation choice $y_{o,n}$ with the states sequence $\{s_{t,o,n}\}_{t \leq T_o}$
 - $U_{t,o,n}$: vector of random utilities associated with $s_{t,o,n}$ (dimension E)
 - ε_{t,o,n}: vector of unobserved attributes interfering in U_{t,o,n} associated to s_{t,o,n} (dimension E)
 - $\overline{\nu}_{t,o,n}$: utility associated with the frame t of the video sequence o for the individual n, measuring the frame dynamic
 - $y_{o,n}$: choice made by the respondent n when faced to the video sequence o

