Railway Passenger Service Timetable Design

Tomáš Robenek Yousef Maknoon Shadi Sharif Azadeh Michel Bierlaire Jianghang Chen

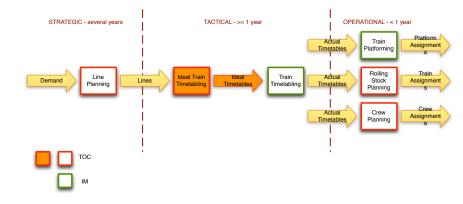
> 15th Swiss Transportation Research Conference April 15 – 17, 2015

> > April 17, 2015

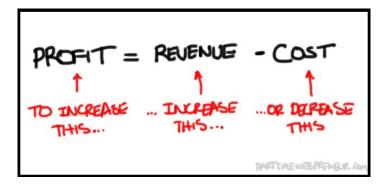
Where Do the Babies Come From?

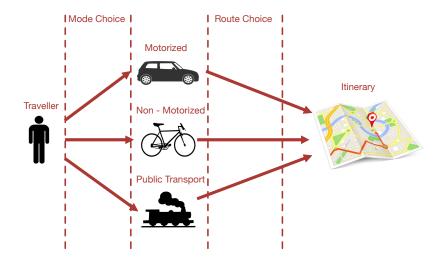
Figure : Calvin and Hobbes by Bill Watterson

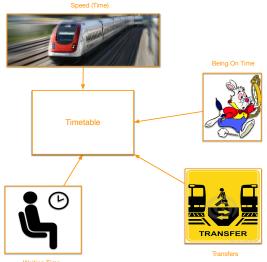
Where Do the Timetables Come From?


Johnson City H	Interprise.
Published Every	Saturday,
\$1. per year-Advanc	e Payment.
SATURDAY, APR.	IL 7, 1883.
TIME TA	BLE
E. T., V. & C	
PAS: ENGER,	ARRIVES.
No. 1, West,	6:37, a. m.
No. 2, East,	9:45, p. m.
No. 3, West,	11:51, p.m.
No. 4, East,	3:56, a. m.
LOCAL FREIGHT,	ARRIVES,
No. 5,	7:20, a. m.
No. 8,	6:20, p. m.
JNO. W. EAK	IN, Agent.
E. T. & W. N.	
Passenger, leaves,	7, a. m.
" arrives,	6, p. m.
J.C. HARDI	N, Agent.

- In the industry historical
- Timetable design in the literature
 - non-cyclic: using so called "ideal timetables"
 - cyclic: does not take into account anything


Update of Planning


TOC Point of View



Transport Demand

Passenger Point of View

Waiting Time

Passenger Cost

Perceived cost of a given path using a given timetable (a path is defined as a sequence of train lines, in order to get from an origin to a destination):

$$C = \operatorname{argmin}\left(\alpha \cdot \sum_{i \in I} VT + \beta \cdot \sum_{j \in J'} WT + \gamma \cdot NT + \min\left(\epsilon \cdot SD_{e}, \eta \cdot SD_{l}\right)\right)$$

for all possible sets I, where:

- set of possible trains in a given path
- J^{\prime} set of transfers in a given path using given trains
- α value of time (monetary units per minute)
- β value of waiting time (monetary units per minute)
- γ penalty for having a transfer (monetary units)
- ϵ value of being early (monetary units per minute)
- η value of being late (monetary units per minute)

Decision Variables I

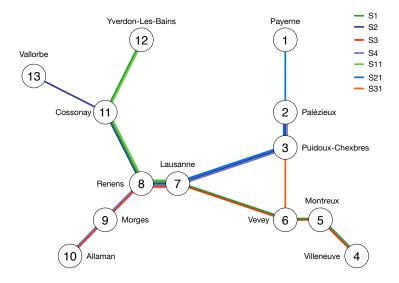
- - the total cost of a passenger with ideal time *t* between OD pair *i*
 - the total waiting time of a passenger with ideal time t between OD pair i
 - 1 if passenger with ideal time t between OD pair i chooses path p;
 0 - otherwise
 - the value of the scheduled delay of a passenger with ideal time t between OD pair i
 - the departure time of a train v on the line l (from its first station)

Decision Variables II

z'.

- 1 if a passenger with ideal time t between OD pair i on the path p takes the train v on the line l; 0 otherwise
 - dummy variable to help modeling the cyclicity corresponding to a train v on the line l
- train occupation of a train v of the line / on a segment g
- number of train units of a train v on the line l
- 1 if a train v on the line l is being operated; 0 otherwise

max (<i>revenue — cost</i>)	(1)
passenger cost $\leq \epsilon$	(2)
cost function	(3)
at most one path per passenger	(4)
link trains with paths	(5)
cyclicity	(6)
train scheduling	(7)
train capacity	(8)
scheduled delay	(9)
waiting time	(10)



Case Study – Switzerland

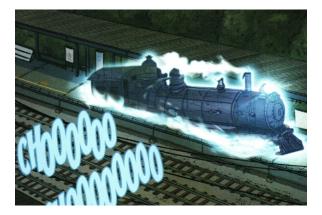
⁰source: www.myswitzerland.com

S-Train Network Canton Vaud, Switzerland

SBB 2014 (5 a.m. to 9 a.m.)

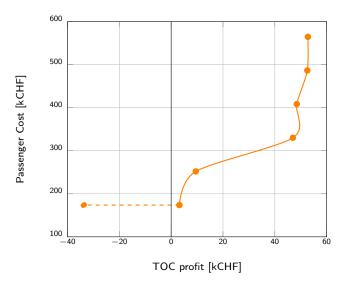
- OD Matrix based on observation and SBB annual report
- 13 Stations
- 156 ODs
- 14 (unidirectional) lines
- 49 trains
- Min. transfer 4 mins
- VOT 27.81 CHF per hour
- 3 models current (SBB), cyclic (60 min cycle optimal), non-cyclic

Line	ID	From	То	Departures			
61	1	Yverdon-les-Bains	Villeneuve	-	6:19	7:19	8:19
S 1	2	Villeneuve	Yverdon-les-Bains	5:24	6:24	7:24	8:24
S2	3	Vallorbe	Palézieux	5:43	6:43	7:43	8:43
	4	Palézieux	Vallorbe	-	6:08	7:08	8:08
S 3	5	Allaman	Villeneuve	-	6:08	7:08	8:08
53	6	Villeneuve	Allaman	-	6:53	7:53	8:53
S4	7	Allaman	Palézieux	5:41	6:41	7:41	8:41
54	8	Palézieux	Allaman	-	6:35	7:35	8:35
S11	9	Yverdon-les-Bains	Lausanne	5:26*	6:34	7:34	8:34
511	10	Lausanne	Yverdon-les-Bains	5:55	6:55	7:55	8:55
S21	11	Payerne	Lausanne	5:39	6:39	7:38*	8:39
521	12	Lausanne	Payerne	5:24	6:24	7:24	8:24
S31	13	Vevey	Puidoux-Chexbres	-	6:09	7:09	8:09
331	14	Puidoux-Chexbres	Vevey	-	6:31*	7:36	8:36

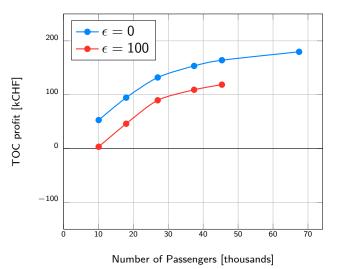

There was a Bug

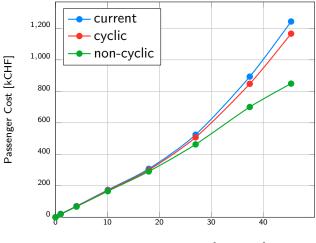
There is a Ghost Train in the Network

- Unlimited capacity
- Single departure time
- Pax on the board don't need to pay for the service

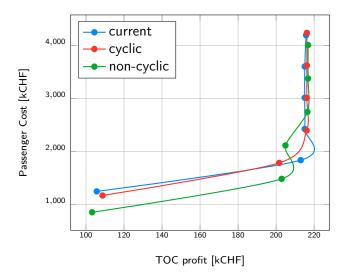

Results of the Current Model for the Base Case

€ [%]	0	20	40	60	80	100	100*
profit [CHF]	52 764	52 538	48 487	46 965	9 507	3 205	-33,726
cost [CHF]	564 597	486 438	408 278	330 119	251 959	173 800	173 797
Ib [CHF]	53 771	54 153	54 259	54 627	54 615	50 527	168 153
gap [%]	1.91	3.07	11.90	16.31	474.47	1 476.51	3.25
gap [CHF]	1 007	1 615	5 772	7 662	45 108	47 322	5 644
time [s]	7 200	7 200	7 200	7 200	7 200	7 200	7200
drivers [-]	16	16	22	21	44	44	48
rolling stock [-]	31	30	32	30	49	51	96
served [%]	98.48	98.68	100.00	99.98	100.00	100.00	100.00

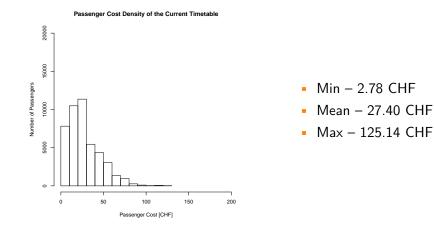



Pareto Frontier of the Current Model for the Base Case

TOC Profit as a Function of the Demand



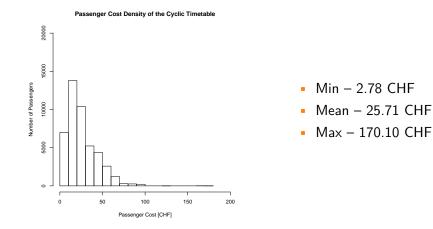
Passenger Cost as a Function of the Demand



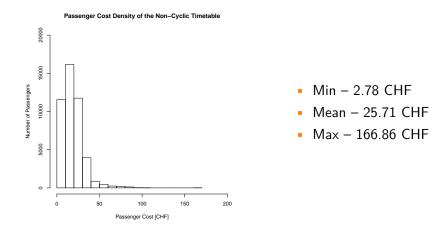
Number of Passengers [thousands]

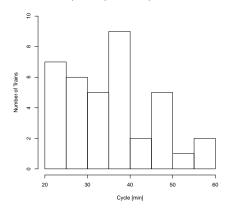
Pareto Frontiers of the Congested Case

Passenger Cost Density I



23 / 28


Passenger Cost Density II


Passenger Cost Density III

Better Cycle?

Cycle Density of the Non–Cyclic Timetable

Mean – 35.72 min

Conclusions

- We formulate the ITTP problem
 - max profit or min pax cost
 - cyclic or non-cyclic timetables
 - pax flows (connections)
- Biased Ghost Train
- TOC can choose the best trade-off between cost and profit
- Non-cyclic timetable is better
- Shorter cycle can reach the costs of the non-cyclic timetable (need to verify on a full day)

Future Work

- Heuristics
- Full day

Thank you for your attention.