Travellers well-being measuring and dynamic facial expression recognition

Thomas Robin

Michel Bierlaire

Javier Cruz

12th july 2010

The context

- Recent interest for emotion recognition in transportation:
 - Well-being measuring of users
 - Improve public transportation offers
 - Improve car comfort
 - Abou-Zeid, M., Ben-Akiva, M. and Bierlaire, M. (2008). Happiness and travel behavior modification, Proceedings of the European Transport Conference, Leiden, The Netherlands.

Driving assistance

- SafetyMobility

The context

- Emotion: **mental** and **physiological** state associated with a wide variety of feelings, thoughts and behavior.
- Emotions signs easy to measure with non-intrusive techniques for transportation users:

BehaviorFacial expression

- Voice intonation

The context

Well being measuring

Driving assistance

Adapt car behavior to a danger

Objectives

- Model the facial expression recognition made by a person looking at a facial video sequence
- Model explicitely the causal effects
- . No classification
- Estimate the model on **behavioral** data (relax ground truth assumptions)

Outline

- Introduction
- . Data: video
- Features extraction
- . Data: behavioral data
- . Models
- Model predictions
- Conclusion and Perspectives

Introduction

• Model overview:

Data: video database

• The Technical University of Munich database (TUM) Facial Expression and Emotion Database (FEED)

Students faced to a video, natural expressions recorded

138 sequences, 18 subjects

Features extraction: Active Appearance Model

Data: internet survey

- Survey conducted at the address below (English, French, Italian, Spanish):
 http://transp-or2.epfl.ch/videosurvey/
- Respondents have to: | create an account

Socio-economics characteristics

- label some video sequences with expressions
 observations
- 1 database of video is used:

Facial Expression and Emotion Database
(FEED)

Models: introduction

- 3 models based on different assumptions: •
 - Reduced model: only last frame is relevant
 - Latent model: only one frame is relevant
 - 3) Smoothed model: a group of frames is relevant
- Example:

Models: Reduced model ①

• Example:

• Inspired from the static version of the work:

M.Sorci, M.Bierlaire, J-P.Thiran, J.Cruz, Th.Robin and G.Antonini (2008) Modeling human perception of static facial expressions, paper presented at 8th IEEE Int'l Conference on Automatic Face and Gesture Recognition.

Models: Reduced model

- Discrete choice model (DCM)
- Choice set: 9 expressions (Happiness, Surprise, Fear, Disgust, Sadness, Anger, Neutral, Other, Don't know)
- Logit model

- Utility specification: Alternative specific constants (ASC)
 - Facial measures for AUs (FACS)
 - Elements of C vectors (outputs of AAM)

Models: Latent model²

• Example:

- Combination of 2 DCMs:
 - Instantaneous expression perception sub-model
 - Frames weighing sub-model

Models: Latent model²

- $P_{M_2}(i|t, o, \theta_{M_2,1}, \alpha)$: Instantaneous expression perception sub-model (DCM).
- $P_{M_2}(t|o, \theta_{M_2,2})$: Video frames weighing sub-model (DCM).
- $P_{M_2}(i|o, \theta_{M_2}, \alpha)$: Model.

Models: Smoothed model ³

- Combination of 2 DCMs:
 - Instantaneous expression perception sub-model
 - Sub-model handling with the detection of the first frame of the relevant group of frames

Models: Smoothed model ³

- $P_{M_3}(i|l, o, \theta_{M_3,1})$: Instantaneous expression perception sub-model (DCM).
- $P_{M_3}(t|o, \theta_{M_3,2})$: Detection of the first frame of the relevant group (DCM).
- $P_{M_3}(i|o, \theta_{M_3})$: Model.

Models: Estimation results

- Simultaneous estimation of sub-models by likelihood maximization
- Estimation of the models using codes based on BIOGEME

	Reduced model	Latent model	Smoothed model
Nb of observations	369	369	369
Nb of parameters	32	45	44
Null log-likelihood	-810.78	-810.78	-810.78
Final log-likelihood	-475.79	-441.28	-447.67
$\bar{\rho}^2$	0.374	0.400	0.394

• Parameters are interpretable and have the good signs:

M.Sorci, M.Bierlaire, J-P.Thiran, J.Cruz, Th.Robin and G.Antonini (2008) Modeling human perception of static facial expressions, paper presented at 8th IEEE Int'l Conference on Automatic Face and Gesture Recognition.

Model predictions: Reduced model ①

• Expressions order: H, SU, F, D, SA, A, N, O, DK

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Model predictions: Latent model²

• Expressions order: H, SU, F, D, SA, A, N, O, DK

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Model predictions: Smoothed model³

• Expressions order: H, SU, F, D, SA, A, N, O, DK

Conclusion and perspectives

• Conclusions:

- Behavioral approach of the facial expression recognition
- Pre-validated models
- Models ready to use for applications

• Perspectives:

- Validation of the models on another dataset
- Couple the model with a tracker of facial characteristics
- Applications of the models on a case study

Thanks for your attention

http://transp-or2.epfl.ch/videosurvey/

