Behavioural modeling of facial expression recognition

Thomas Robin, Prof. Michel Bierlaire, Javier Cruz

20th january 2009

The context

<u>Applications:</u> · Driver's attention state · Smart meeting rooms · Human-Machine interfaces

Objectives

- Model the facial expression recognition made by a person looking at a 1 face image
 2 face video sequence
- Model explicitely the **decision process**
- Estimate the model on **behavioural** data (not classification)

Outline

- . Introduction
- Features extraction
- Static facial expression recognition (images)
- **Dynamic facial expression recognition** (video sequences)
- Conclusion and Perspectives

Introduction

Introduction: facial expression recognition

• Static:

• **Dynamic:** | **Input** = face video

Output = sequence of probability distribution

Introduction: Modeling

. Extraction of images/videos informations (features)

Active Appearence Model (AAM)

STATIC face expression recognition

Discrete Choice Models (DCM)

• **DYNAMIC** face expression recognition

Extension of Discrete Choice Models

Inspired from dynamic models

Introduction: Discrete Choice Models

- Econometric models developped since the 50's (transportation, marketing)
- Disagregate model
- No need of ground truth **by difference with classification**
- Finite set of choice alternatives (choice set)
- Based on the utility maximisation theory
- Estimated by likelihood maximization
 Meed of behavioural

Features extraction

Features extraction: Active Appearance Model

Features extraction: Active Appearance Model FACS

- In 1978 Ekman and Friesen developed the Facial Action Coding System
- Mesurement units: "Action Units" (Aus)
 - AUs are contractions or relaxations of one or more muscles
 - 46 AUs account for changes in facial expression
 - 12 AUs describe changes in gaze direction and head orientation

SP-0R

The FACS has become the leading standard for measuring facial expressions

Features extraction: Active Appearance Model FACS

AU1	AU2	AU4	AU5	AU6	AU7
10 0	66	26	00		6
Inner Brow Raiser	Outer Brow Raiser	Brow Lowerer	Upper Lid Raiser	Cheek Raiser	Lid Tightener
AU9	AU10	AU12	AU15	AU16	AU17
(A)	the contraction	de	30	(E)	3
Nose Wrinkler	Upper Lip	Lip Corner	Lip Corner	Lower Lip	Chin Raiser
	Raiser	Puller	Depressor	Depressor	
AU20	AU23	AU24	AU25	AU26	AU27
	-	1	Ē	ē	
Lip Stretcher	Lip Tightener	Lip Pressor	Lips part	Jaw Drop	Mouth Stretch

Features extraction: Active Appearance Model EDU

 Expression Descriptive Units by Antonini, Sorci, Bierlaire and Thiran in « Discrete Choice Models for Static Facial Expression Recognition »

	1	a 1 5	× 14	*** 2 20 -21 - 22	10
145		13	42	- 26 - 27 - 2	/**
	81 88	T.M.	-10-10	21 /22	54
			-20 -5	1	

EDU1	$\frac{lew+rew}{leh+reh}$	EDU8	$\frac{leh+reh}{lbh+rbh}$
EDU2	$rac{lbw}{lbh}$	EDU9	$\frac{lew}{nw}$
EDU3	$rac{rbw}{rbh}$	EDU10	$\frac{nw}{mw}$
EDU4	$rac{mw}{mh}$	EDU11	EDU2 / EDU4
EDU5	$\frac{nh}{nw}$	EDU12	EDU3 / EDU4
EDU6	$rac{lew}{mw}$	EDU13	EDU2 / EDU10
EDU7	$\frac{leh}{mh}$	EDU14	EDU3 / EDU10

Features extraction: Active Appearance Model C parameters

• Results of the **Principal Component Analysis (PCA)** of the images

Levels of grey on the faces

Static face expression recognition

Static case: model presentation

Use of a Discrete Choice Model

- A choice theory defines :
 - **a decision maker** : a human
 - alternatives : possible expressions
 - attributes of alternatives : characteristics of the images (FACS, EDU, C parameters)
 - decision rule : utility maximisation theory
- Choice set :

Happiness, Surprise, Anger, Fear, Disgust, Sadness, Neutral, Other, Don't know

Static case: DCM, decision rule

- Utility maximisation theory
 - Association of a function, called **utility** to each alternative
 - It depends on the **alternative** i, and on the **decision maker** n

The decision maker *n* will choose the alternative *i* which has the higher utility

$$U_{in} = V_{in} + \epsilon_{in}$$

 V_{in} : deterministic part of the utility of alternative *i* for individual *n*

 ϵ_{in} : error term, different assumptions can be made on its distribution

Static case: DCM, specification of the error term

• We suppose ϵ_{in} independent and identically distributed (iid) with an extreme value distribution

Multinomial Logit model

 $P_n(i|C_n)$: probability for the individual **n** to choose the alternative **i**

$$P_n(i|C_n) = \frac{e^{V_{in}}}{\sum_{j \in C_n} e^{V_{jn}}}$$

 C_n : Choice set, depends on the individual n

Static case: DCM, utility specification

• 3 different specifications

Static case: behavioural data

• Estimated by likelihood maximization

Need of behavioural data

- People have to label randomly chosen pictures
- People report their socioeconomics characteristics (age, formation, job...)
- 1718 participants for more than 39000 labeled images

http://lts5www.epfl.ch/face

Static case: behavioural data

• Estimation of the models with Biogeme (biogeme.epfl.ch)

$$L = \sum_{n=1}^{N} \left(\sum_{j=1}^{9} y_{jn} log(P_{jn}) \right)$$

- Model 1: "FACS" (Primary AU + Secondary AU + Transient Features)
 - 93 parameters , LL = 57121
- Model 2: "FACS + EDU"
 - 120 parameters , LL = 55027
- Model 3: "FACS + EDU + C COEFFICIENTS"
 - 145 parameters , LL = 54657

Static case: simulation

38 observations

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Static case: simulation

33 observations

Static case: simulation

34 observations

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Dynamic face expression recognition

Dynamic case: introduction

• Video sequence = succession of images

• Expression evaluation made at each frame (or time step, 1s)

- **Discrete choice model**
- Need of weight the frame evaluation in the choice expression process

> Discrete choice model

• Estimation by likelihood maximization

Dynamic case: introduction

Dynamic case: the model

faced to the frame *t*

ECOLE POLYTECHNIC FÉDÉRALE DE LAUSAN

Dynamic case: behavioral data

- Survey conducted at the address below(English, French, Italian, Spanish): <u>http://transp-or2.epfl.ch/videosurvey/</u>
- Respondents have to: | create an account

Socioeconomics characteristics

- label some video sequences with expressions
 observations
- 2 databases of video are used: | Cohn-Kanade

- Technical University Munich (TUM)

Dynamic case: behavioral data: video database

- The Cohn-Kanade database
 - Actors **playing** expressions, according to the Facial Action Coding System (**FACS**)

55 sequences, 11 subjects

Dynamic case: behavioral data: video database

- The Technical University Munich database (TUM)
 - Students faced to a video, natural expressions recorded

399 sequences, 18 subjects

Dynamic case: behavioral data: internet survey

Dynamic case: behavioral data: internet survey

Dynamic case: likelihood function

$$l = \prod_{n=1}^{N} \prod_{o=1}^{O_n} P_{o,n}(i)$$

Conclusions and Perspectives

- Conclusion:

 - static case: Discrete Choice Model
 dynamic case: new model framework

- <u>Perspectives for the **dynamic** case</u>:
 - implementation of the likelihood maximization
 - model estimation: find a satisfactory specification
 - model validation: measure the prediction power

Thank you for your attention

