

Simulating multiple intra-household interactions in ABMs

EPFL Outline

- Introduction and motivation
 - What are intra-household interactions?
 - Why is it important to capture intra-household interactions in activity-based models?
- Current literature and opportunities to contribute
 - · What is the current state of research in activity-based modelling?
- Contributions and scope
- Model framework
- Simulation results
- Conclusion

Introduction: Motivation

- Activity-based models (ABMs): Activity-based models portray how people plan their activities and travels over a period of time such as a day.
- Individuals do not plan their day in isolation from other members of the household.
- Various interactions, time arrangements, and constraints affect the in-home as well as out-of-home activity schedules of individuals.

Example intra-household interactions

- What are some examples of intra-household interactions?
 - Individuals in a household synchronize their schedules to create time window overlaps for joint activities.

Joint participation in a recreational activity

A family dinner at home

- 1

- What are some examples of intra-household interactions?
 - Household members coordinate their travels as well.

Sharing a ride

Example intra-household interactions

,

- What are some examples of intra-household interactions?
 - The members of a household also share responsibilities and resources with each other to satisfy household needs.

Sharing household maintenance responsibilities

Sharing resources

- How can intra-household interactions affect the schedule of individuals?
 - Policies directly affecting the activity and travel patterns of an individual, such as earlier school starting times, can affect the schedule of multiple household members.
 - Joint activities require coordination between the schedules of participating individuals.
 - Resource constraints affect the scheduling choices of individuals.
 - The escorting duty affects the schedule and travel patterns of the adult members as they should accommodate the
 pick-up and drop-off activities into their schedule.
- Considering the interpersonal dependencies in a household, the activity schedule should be addressed from a **group decision-making point-of-view** rather than isolated agents.

What is the current state of the research in activity-based modelling?

Activity scheduling process has been of interest to transportation activity-based modelers in the
last decades (e.g. Hilgert et al. 2017, Bhat et al. 2004, Bowman & Ben-Akiva 2001, Chapin
1974, Hagerstrand 1970) as the demand for travel is assumed to be driven by participation in
activities distributed in space and time.

 Most of the conventional activity-based models in transportation research are based on individual decision-making process where the individuals are treated as isolated agents whose choices are independent of other decision-makers.

- However, ignoring the interdependence between household members causes a biased simulation of activity-travel schedules as the schedule of household members are mutually dependent.
- Studies on group choice models are limited.
- Only a limited number of studies examine household decision-making perspectives and consider the effect of intra-household interactions in their activity-based models (e.g. HAPP, TASHA, MDCEV, etc).

EPFL Gap in the current literature

Contributions and scope

- A framework to simulate the daily activity schedules of individuals in a household, explicitly accommodating multiple interactions:
 - Group decision-making paradigm
 - Simultaneous simulation of different choice dimensions
 - More behavioural realism compared to conventional sequential models.
 - Captures complex trade-offs between different choice dimensions.
 - Explicit interactions
 - Ensures consistency of choices.
 - Multiple interaction dimensions
 - High level of flexibility
 - Based on an optimization-based framework.
 - Interactions and dependencies can be comfortably incorporated by modifying the constraints and/or terms
 of the objective function of the optimization problem.
 - Both **in-** and **out-of-home** scheduling are simulated within the same framework
 - Allows modelers to capture the trade-offs between in- and out-of-home activities (e.g. in- and out-of-home activity location choices).
 - Understanding behaviour and interactions throughout the day is the key to better demand-side management and adapting infrastructure systems (e.g. transportation, energy) to deliver critical services that meet the needs of society.

EPFL Methodology

- We build on the Optimisation-based Activity Scheduling Integrating Simultaneous choice dimensions (OASIS) framework (Pougala et al. 2022):
 - A mixed-integer utility optimization approach
 - Explicitly captures trade-offs between choices
 - At the level of isolated individuals
 - Focuses on out-of-home activity schedules
 - Is defined under a set of constraints that determines the validity of the schedules at an individuallevel such as:
 - Time budget constraints,
 - Time window constraints,
 - Participation constraints,
 - Sequence constraints, and
 - No duplicates.

Base OASIS Formulation

- Objective: $\Omega_n = \max U_n$
- Utility of a schedule: $U_n = \sum_{a_n} U_{a_n}$
 - For individual n, considering activity a_n :

Utility purely associated with participation in activity, irrespective of timing and trips Duration deviations $U_{a_n} = \boxed{U_{a_n}^{partic} + U_{a_n}^{start} + U_{a_n}^{duration} + \sum_{b_n \in A^n} U_{a_n,b_n}^{travel} + \varepsilon_{a_n}}$ Start time deviations Travel from activity a_n to b_n

OASIS with interactions: Agents with intra-household interactions

- **Fundamental assumption**: individuals do not plan their day in isolation from other members of the household.
- The framework considers the household as a single decision-making unit while encompassing the activity scheduling behaviour of all agents through the utility that each agent derives from their schedules.
- Agents schedule their day to maximize the total combined utility of the household.

$$\Omega = \max \sum_{n=1}^{n=N_m} w_n U_n$$

agent priority parameter

 It accounts for both individuals' constraints and the constraints that appear due to interpersonal dependencies within household members.

- We first ensure that the possible interaction aspects are captured in the utility function.
 - A term capturing the reward of joint activity participation with other member(s) of the household, compared to solo participation in the activity.

$$U_{a_n}^{partic} = U_{a_n}^{joint} + U_{a_n}^{escort} + U_{a_n}^{location}$$

Joint activity participation

- We first ensure that the possible interaction aspects are captured in the utility function.
 - A term capturing the penalty of escorting other agent(s).

- We first ensure that the possible interaction aspects are captured in the utility function.
 - a term capturing the utility of different activity location choices.

$$U_{a_n}^{partic} = U_{a_n}^{joint} + U_{a_n}^{escort} + U_{a_n}^{location}$$

location

.

Agents in the household solve an optimization problem with the objective to maximize the household utility:

$$\Omega = \max \sum_{n=1}^{n=N_m} \sum_{a_n \in A^n} w_n U_{a_n}$$

$$\Omega = \max \sum_{n=1}^{N-N_m} \sum_{a_n \in A^n} w_n \left(U_{a_n}^{partic} + U_{a_n}^{start} + U_{a_n}^{duration} + \sum_{b_n \in A^n} U_{a_n, b_n}^{travel} + \varepsilon_{a_n} \right)$$

EPFL Constraints

- Specify the model constraints such that they allow the integration of in-home activities alongside activities outside the home in a single framework.
- Define household-level constraints to explicitly capture the interplays as within-household interactions lead to additional and more complex constraints.
 - · Household private vehicle ownership,
 - Allocation of the resources to household members,
 - Sharing household maintenance responsibilities,
 - · Joint participation of household members in activities,
 - Joint travels, and
 - Escorting.

OASIS with interactions: Agents with intra-household interactions

Inputs:

- Household composition,
- · Scheduling preferences,
- Activity flexibilities,
- Activity choice set, and
- Household resources and their associated events set.

Decision variables:

- · Activity participation,
- Start time,
- Duration,
- Succession between activities.

Output:

 A realisation from the distribution of valid schedules, under both individual- and household-level constraints and preferences.

 a_n :

.

Simulation From isolated individuals...

Simulation

To family of 2; 2 adults with no children...

Simulation Family of 2; 2 adults with no children

Table 1: Car location sequence and occupancy in the example of family of 2

Location	Start time (hh:mm)	End time (hh:mm)	Duration (hh:mm)	Person using	Parked_out indicator	Car occupancy
Home	00:00	6:24	6:24	-	0	0
On the road	6:24	7:00	0:36	1	0	1
Work	7:00	12:41	5:41	1	1	0
On the road	12:41	13:07	0:26	1	0	1
Other2	13:07	14:07	1:00	1	1	0
On the road	14:07	14:40	0:33	1	0	1
Home	14:40	15:45	1:05	-	0	0
On the road	15:45	16:18	0:33	1&2	0	2
Other1	16:18	22:27	6:08	1&2	1	0
On the road	22:27	23:00	0:33	1&2	0	2
Home	23:00	24:00	1:00	-	0	0

EPFL Simulation

To family of 3; 2 adults and 1 child...

Distributions

Distributions

To conclude

Summary:

- General framework
- Group decision-making mechanism; activity scheduling at the level of the household
- Explicit interactions
- Capture resource constraints
- Flexible framework; interaction dimensions can be arbitrarily added

References

- Axhausen, K. W. & Gärling, T. (1992), 'Activity-based approaches to travel analysis: conceptual frameworks, models, and research problems', Transp. Rev. 12(4).
- Bhat, C. R., Guo, J. Y., Srinivasan, S. & Sivakumar, A. (2004), 'Comprehensive Econometric Microsimulator for Daily Activity-Travel Patterns', Transp. Res. Rec. 1894 (1), 57–66.
- Bowman, J. L. & Ben-Akiva, M. E. (2001), 'Activity-based disaggregate travel demand model system with activity schedules', Transp. Res. Part A Policy Pract. 35 (1), 1–28.
- Chapin, S. (1974), Human Activity Patterns in the City: Thing People Do in Time and Space, Wiley, New York, USA.
- Hagerstrand, T. (1970), 'What about people in regional science?', Reg. Sci. Assoc. Pap. 24(1), 6–21.
- Hilgert, T., Heilig, M., Kagerbauer, M. & Vortisch, P. (2017), 'Modeling week activity schedules for travel demand models', Transp. Res. Rec. 2666 (2666), 69–77.
- Pougala, J., Hillel, T. & Bierlaire, M. (2022), 'Capturing trade-offs between daily scheduling choices', J. Choice Model. 43.
- Pougala, J., Hillel, T. & Bierlaire, M. (2022), OASIS: Optimisation-based Activity Scheduling with Integrated Simultaneous choice dimensions, Technical report.
- Recker, W. W. (1995), 'The household activity pattern problem: General formulation and solution', Transp. Res. Part B 29(1), 61–77.
- Roorda, M., Miller, E. J. & Kruchten, N. (2006), 'Incorporating within-household interactions into mode choice model with genetic algorithm for parameter estimation', Transp. Res. Rec. 1(1985), 171–179.

