

Integrated in- and out-of-home scheduling framework: A utility optimization-based approach

Negar Rezvany
Tim Hillel
Michel Bierlaire

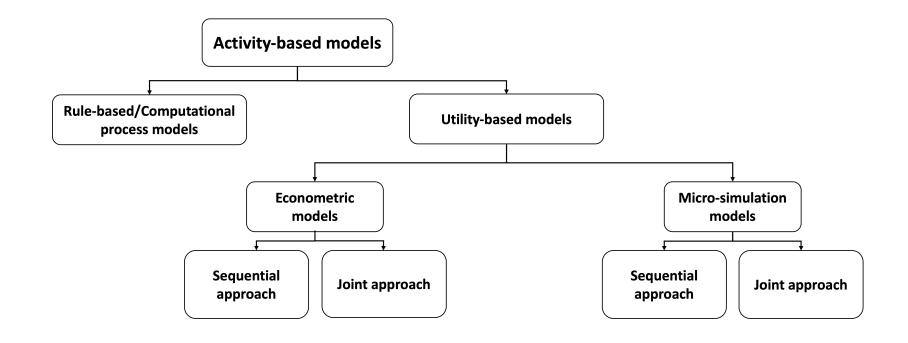
Outline

- Introduction and motivation
 - Why is studying activity scheduling throughout the day important?
- Current literature and limitations
 - What are the current research streams in activity-based modeling?
- Model framework
 - What are the differences between scheduling activities in-home and out-of-home?
- Empirical investigation
- Results
- Further research

EPFL

Introduction

Introduction


Motivation and possible applications Why is studying activity scheduling throughout the day important?

- It allows modellers to capture the trade-offs and interactions between in-home and outof-home activities
 - Squeezing in-home activities when spending more time on out-of-home activities
 - Deciding where to do different activities; at home or at an out-of-home location; based on the schedule
 of the whole day
- 2. This modeling approach can contribute to **demand side management**
 - Energy and transport demand can both be considered as being derived from an individual's activity participation
 - Activity scheduling is the connecting element between transportation and energy simulation
 - Time-use pattern inside home can be used to predict building energy demand at high temporal resolution

Major research streams in Activity-based models What are the current research streams in activity-based modeling?

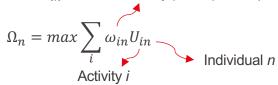
6

Limitations of the current models

Methodological:

- Empirical rule-based or randomized process to determine individuals' activity scheduling
 - Hard-coded and cannot be generalised to situations not seen in the data
 - Do not represent the nature of scheduling process and cannot capture complex trade-offs and household interaction

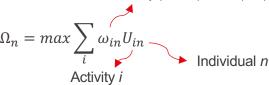
Contextual:


- The current approaches to simulate the activity patterns focus on either time-use in home or out-of-home activities and **not both**
 - Thus, the interactions between in- and out-of-home activities (e.g., squeezing in-home activities when spending more time on out-of-home activities) are not considered

Utility-based optimisation model (*Pougala et al., 2021)*

 ω_{in} : indicate activity participation (0/1)

- In order to address these shortcomings, *Pougala et al. (2021)* proposes a new scheduling framework:
 - Treats individuals as utility maximizers
 - Defined as a mixed-integer optimization problem for each *individual*, maximising the sum of the utilities of completed activities in a schedule over a fixed time budget
 - Incorporates simultaneous estimation of multiple scheduling decisions such as activity participation, and activity scheduling (start time, duration, sequence)
 - Generates distribution of schedules from which likely schedules can be stochastically drawn
 - Output: a feasible schedule
 - Major advantages: high level of flexibility, explicit constraints, simultaneous estimation of scheduling decisions
 - Possible gaps for extension:
 - the framework has been investigated only for studying the out-of-home activity scheduling (developed for transportation models) → the resulting schedules do not contain any information on activities performed at home



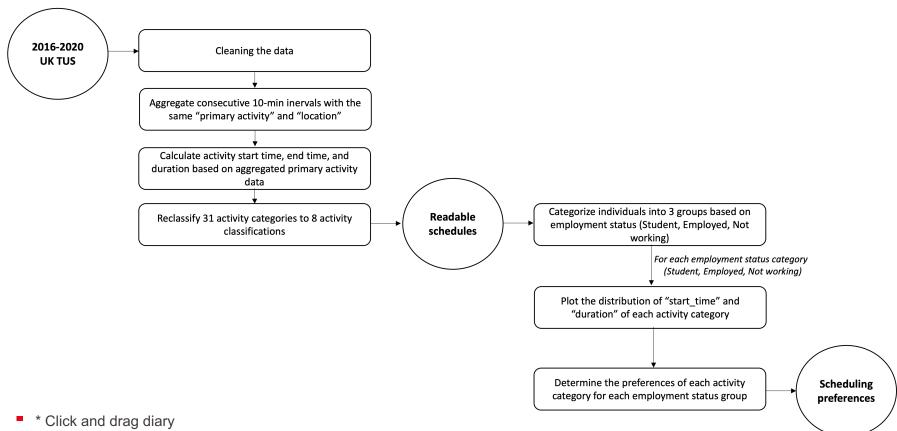
Model framework

9

 ω_{in} : indicate activity participation (0/1)

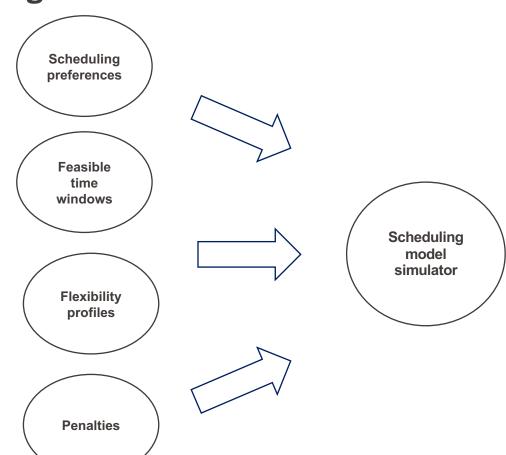
- Build on the scheduling model developed by Pougala et al. (2021)
- Extend the framework to:
 - Incorporate joint modelling of time-use in the home alongside activities outside the home
 - Incorporates simultaneous estimation of choice of activity location as well as other scheduling decisions

What are the differences between scheduling activities in-home and out-of-home?

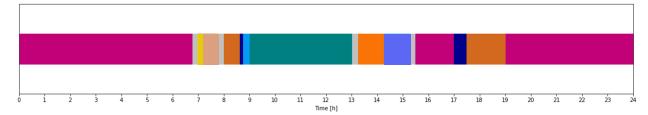

Out-of-home activities In-home activities Soft time-window constraints Mostly more flexible to schedule deviations Hard time-window constraints No trips Mostly more sensitive to schedule deviations Time budget Space and resource constraints explicitly Include trips and mode choice affect household members' schedules Interactions within household members

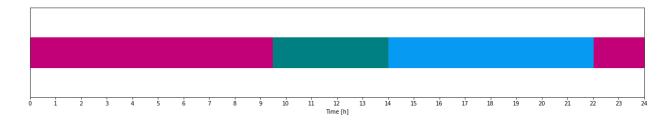
EPFL

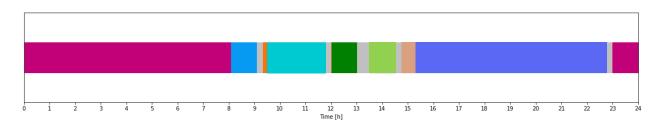
Empirical investigation


Dataset: CaDDI* survey: 2016-2020 UK TUS (Gershuny & Sullivan, 2021)

Scheduling model






EPFL

FTRANSP-OR

Some results: Student (weekday)

- One major opportunity to extend the current scheduling approach is to investigate the household interaction effects and interpersonal dependencies.
- What are the inter-household interactions?

 One major opportunity to extend the current scheduling approach is to investigate the household interaction effects and interpersonal dependencies.

• What are the inter-household interactions?

- Car availability limitation
- Resource constraints
- Sharing household maintenance responsibilities by family members
- Joint participation of household members in maintenance and leisure activities
- Sharing common household vehicles
- Facilitation of activity participation of household members with restricted mobility by undertaking pick-up and drop-off trips
- Coordination of daily rhythms between partners

How can we capture the inter-household interactions?

- How can we capture the inter-household interactions?
 - Considers the activity scheduling at the level of household (group decision model); rather than at the level of isolated individuals (individual model)

$$\Omega = \max \sum_{n} \sum_{i} \omega_{i_n} U_{i_n}$$

Individual n Activity i

- 2. Capture interactions
 - Terms in utility (altruism, companionship, efficiency, coordination costs)
 - constraints
- 3. Capture resource constraints

$$\sum_n \omega(t)_{in} r_m \leq C_m \qquad \forall t \in [0, period], \forall m$$
 Activity participation (0/1) at time t
Resource m

References

- Gershuny, J. and O. Sullivan (2021) United Kingdom Time Use Survey Sequence Pre and During COVID-19 Social Restrictions.
- Pougala, J., T. Hillel and M. Bierlaire (2021) Capturing trade-offs between daily scheduling choices, Technical Report, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland.

