

Integrated models of transport and energy demand

Negar Rezvany

Tim Hillel

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne (EPFL)

EPFL Motivation

Common element: behavior

EPFL Covid-19: An unprecedented decline in demand for mobility (EIA, 2020)

 Covid-19 has led to large changes in urban transport activities; public transport demand has declined dramatically while cycling, walking, and car use has been less impacted and sometimes higher than usual.

EPFL Lockdowns have also driven decreases in electricity demand (EIA, 2020)

EPFL Research question

 How can we jointly model energy and transportation demand from behavioral first principles?

EPFL Proposed solution

- Activity-based approach to model complex individual behaviors
 - Capture relationships between participations in various activities.
 - Model high-level demand as the result of the **interactions** of multiple agents.
 - Can represent **complex behaviors** within a city or region to test more flexible scenarios and policies.

Framework

EPFL Research challenge

Modelling interdependencies of urban systems

 requires co-simulating urban systems (e.g. buildings, transportation networks) including their co-dependencies (Hong et al., 2020) 8

EPFL Literature review

- What approaches have been used to (independently) model transportation and building energy demand?
- What is the relation between building energy demand and transportation?
- How have the links between building energy demand and transportation been analyzed in the literature?
- To what extent, the activity-based modeling has been applied to analyze urbanscale energy demand?

9

EPFL Urban scale energy modeling platfrom (USEM) (Sola et al., 2018)

EPFL USEM in practice

- USEM is *conceptual*
- Behavioural elements considered independently e.g. using ABM (among other techniques)
- High potential for integration of ABM in a full USEM (Keirstead et al., 2012, Sola et al., 2020)

EPFL Scheduling – State of research

Energy modeling approaches

Travel behaviour modeling

EPFL Framework

EPFL Framework

EPFL Scheduling-proposed solution

- How to re-implement the scheduling model from first principles to take into account both in-home and out-of-home activities?
 - Capture the trade-offs between decisions to do activities in- or out of-home which is a new behavioral modelling including decisions where to do an activity.

18

• Capturing interaction between individuals in a household.

build on a current ongoing research at TRANSP-OR (Pougala et al., 2020) +

incorporate time-use for activities in the home

+

calibrate based on TUS

 École polytechnique fédérale de Lausanne

EPFL References I

- Bhat, Chandra R., Jessica Y. Guo, Sivaramakrishnan Srinivasan, and Aruna Sivakumar. 2004. "Comprehensive Econometric Microsimulator for Daily Activity-Travel Patterns." Transportation Research Record: Journal of the Transportation Research Board 1894(1): 57–66.
- Bowman, J. L., and M. E. Ben-Akiva. 2001. "Activity-Based Disaggregate Travel Demand Model System with Activity Schedules." *Transportation Research Part* A: Policy and Practice 35(1): 1–28.
- Bustos-Turu, Gonzalo et al. 2016. "Simulating Residential Electricity and Heat Demand in Urban Areas Using an Agent-Based Modelling Approach." In 2016 IEEE International Energy Conference, ENERGYCON 2016, , 6–11.
- EIA. 2020. Annual Energy Outlook. https://www.eia.gov/outlooks/aeo/data/browser/#/?id=2-AEO2021&cases=ref2021&sourcekey=0.
- Hong, Tianzhen et al. 2020. "Ten Questions on Urban Building Energy Modeling." Building and Environment 168. https://doi.org/10.1016/j.buildenv.2019.106508.
- Horni, Andreas, Kai Nagel, and Kay W Axhausen. 2016. The Multi-Agent Transport Simulation MATSim.
- Keirstead, James, Mark Jennings, and Aruna Sivakumar. 2012. "A Review of Urban Energy System Models: Approaches, Challenges and Opportunities." Renewable and Sustainable Energy Reviews 16(6): 3847–66. http://dx.doi.org/10.1016/j.rser.2012.02.047.
- Miller, Eric J., John Douglas Hunt, John E. Abraham, and Paul A. Salvini. 2004. "Microsimulating Urban Systems." Computers, Environment and Urban Systems 28(1–2): 9–44.
- Muratori, Matteo, Michael J. Moran, Emmanuele Serra, and Giorgio Rizzoni. 2013. "Highly-Resolved Modeling of Personal Transportation Energy Consumption in the United States." *Energy* 58: 168–77. http://dx.doi.org/10.1016/j.energy.2013.02.055.
- Roorda, Matthew J., Eric J. Miller, and Khandker M. Nurul Habib. 2008. "Validation of TASHA: A 24-h Activity Scheduling Microsimulation Model." *Transportation Research Part A: Policy and Practice* 42(2): 360–75. <u>http://dx.doi.org/10.1016/j.tra.2007.10.004</u>.
- Scherr, Wolfgang et al. 2020. "Towards Agent-Based Travel Demand Simulation across All Mobility Choices the Role of Balancing Preferences and Constraints." European Journal of Transport and Infrastructure Research 20(4): 152–72.
- Scherr, Wolfgang, Patrick Manser, and Patrick Bützberger. 2020. "Simba Mobi: Microscopic Mobility Simulation for Corporate Planning." Transportation Research Procedia 49(2019): 30–43. https://doi.org/10.1016/j.trpro.2020.09.004.

EPFL References I

- Sola, Alaia, Cristina Corchero, Jaume Salom, and Manel Sanmarti. 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review." Energies 11(12).
- _____. 2020. "Multi-Domain Urban-Scale Energy Modelling Tools: A Review." Sustainable Cities and Society 54: 1–13. https://doi.org/10.1016/j.scs.2019.101872.
- Subbiah, Rajesh. 2013. Energy "An Activity-Based Energy Demand Modeling Framework for Buildings: A Bottom-up Approach." Virginia Polytechnic Institute and State University.
- Tanimoto, Jun, Aya Hagishima, and Hiroki Sagara. 2008. "Validation of Probabilistic Methodology for Generating Actual Inhabitants' Behavior Schedules for Accurate Prediction of Maximum Energy Requirements." *Energy and Buildings* 40(3): 316–22.
- Vovsha, Peter, Mark Bradley, and John L Bowman. 2004. "Activity-Based Travel Forecasting Models in the United States: Progress since 1995 and Prospects for the Future." In *EIRASS Conference on Progress in Activity-Based Analysis*,.
- Waddell, Paul. 2002. "Urbansim: Modeling Urban Development for Land Use, Transportation, and Environmental Planning." *Journal of the American Planning Association* 68(3): 297–314.
- Widén, Joakim, and Ewa Wäckelgård. 2010. "A High-Resolution Stochastic Model of Domestic Activity Patterns and Electricity Demand." Applied Energy 87(6): 1880–92. http://dx.doi.org/10.1016/j.apenergy.2009.11.006.
- Wilke, Urs, Frédéric Haldi, Jean Louis Scartezzini, and Darren Robinson. 2013. "A Bottom-up Stochastic Model to Predict Building Occupants' Time-Dependent Activities." *Building and Environment* 60: 254–64. http://dx.doi.org/10.1016/j.buildenv.2012.10.021.
- Yamaguchi, Yohei, and Yoshiyuki Shimoda. 2017. "A Stochastic Model to Predict Occupants' Activities at Home for Community-/Urban-Scale Energy Demand Modelling." Journal of Building Performance Simulation 10(5–6): 565–81. https://doi.org/10.1080/19401493.2017.1336255.
- Zaraket, Toufic. 2014. "Stochastic Activity-Based Approach of Occupant-Related Energy Consumption in Residential Buildings." ÉCOLE CENTRALE DES ARTS ET MANUFACTURES « ÉCOLE CENTRALE PARIS ».

EPFL References II

- [1] U. Wilke, F. Haldi, J. L. Scartezzini, and D. Robinson, "A bottom-up stochastic model to predict building occupants' time-dependent activities," *Build. Environ.*, vol. 60, pp. 254–264, 2013, doi: 10.1016/j.buildenv.2012.10.021.
- [2] G. Flett and N. Kelly, "An occupant-differentiated, higher-order Markov Chain method for prediction of domestic occupancy," *Energy Build.*, vol. 125, pp. 219–230, 2016, doi: 10.1016/j.enbuild.2016.05.015.
- [3] I. Richardson, M. Thomson, and D. Infield, "A high-resolution domestic building occupancy model for energy demand simulations," *Energy Build.*, vol. 40, no. 8, pp. 1560–1566, 2008, doi: 10.1016/j.enbuild.2008.02.006.
- [4] Y. Yamaguchi and Y. Shimoda, "A stochastic model to predict occupants' activities at home for community-/urban-scale energy demand modelling," J. Build. Perform. Simul., vol. 10, no. 5–6, pp. 565–581, 2017, doi: 10.1080/19401493.2017.1336255.
- [5] R. G. Golledge, M.-P. Kwan, and T. Garling, "Computational-Process Modelling of Household Travel Decisions Using a Geographical Information System," 1994. [Online]. Available: https://escholarship.org/uc/item/4kk8w93s.
- [6] T. A. Arentze and H. J. P. Timmermans, "Albatross: A learning based transportation oriented simulation system," *Citeseer*, pp. 1–23, 2000, doi: 10.1201/9781482283266.
- [7] T. Adler and M. Ben-Akiva, "A theoretical and empirical model of trip chaining behavior," *Transp. Res. Part B*, vol. 13, no. 3, pp. 243–257, 1979, doi: 10.1016/0191-2615(79)90016-X.
- [8] J. L. Bowman and M. E. Ben-Akiva, "Activity-based disaggregate travel demand model system with activity schedules," Transp. Res. Part A Policy Pract., vol. 35, no. 1, pp. 1–28, 2001, doi: 10.1016/S0965-8564(99)00043-9.
- [9] J. Pougala, T. Hillel, and M. Bierlaire, "An Optimization Framework For Daily Activity Schedules," in Proceedings of the 9th Symposium of the European Association for Research in Transportation (HEART), 3-4 February 2021, 2020, pp. 1–13.
- [10] E. McKenna and M. Thomson, "High-resolution stochastic integrated thermal-electrical domestic demand model," *Appl. Energy*, vol. 165, pp. 445–461, 2016, doi: 10.1016/j.apenergy.2015.12.089.
- [10] E. McKenna and M. Thomson, "High-resolution stochastic integrated thermal-electrical domestic demand model," *Appl. Energy*, vol. 165, pp. 445–461, 2016, doi: 10.1016/j.apenergy.2015.12.089.
- [11] G. Bustos-Turu, K. H. Van Dam, S. Acha, C. N. Markides, and N. Shah, "Simulating residential electricity and heat demand in urban areas using an agent-based modelling approach," in 2016 IEEE International Energy Conference, ENERGYCON 2016, 2016, pp. 6–11, doi: 10.1109/ENERGYCON.2016.7514077.

EPFL References II

- [12] J. V. Paatero and P. D. Lund, "A model for generating household electricity load profiles," Int. J. Energy Res., vol. 30, no. 5, pp. 273–290, 2006, doi: 10.1002/er.1136.
- [13] J. K. Gruber, S. Jahromizadeh, M. Prodanović, and V. Rakočević, "Application-oriented modelling of domestic energy demand," Int. J. Electr. Power Energy Syst., vol. 61, pp. 656–664, 2014, doi: 10.1016/j.ijepes.2014.04.008.
- [14] A. Horni, K. Nagel, and K. W. Axhausen, The Multi-Agent Transport Simulation MATSim. 2016.
- [15] L. A. Schaefer, G. T. Mackulak, and J. L. Cherilla, "Application of a general particle system model to movement of pedestrians and vehicles.," in WSC '98: Proceedings of the 30th conference on Winter simulation, 1998, pp. 1155–1160.
- [16] D. T.Gantz and J. R. Mekemson, "Flow profile comparison of a microscopic car-following model and a macroscopic platoon dispersion model for traffic simulation," in WSC' 90: Proceedings of the 22nd conference on Winter simulation, Piscataway, 1990, pp. 770–774.
- [17] R. D. Kuhne and M. B. Rodiger, "Macroscopic simulation model for freeway traffic with jams and stop-start waves," in 1991 Winter Simulation Conference Proceedings, 1991, pp. 762–770, doi: 10.1109/WSC.1991.185683.
- [18] D. L. . Oneal and E. Hirst, "An energy used model of the residential sector," *EEE Trans. Syst. Man, Cybern.*, vol. SMC-10, pp. 749–755, 1980.
- [19] E. Hirst, "A model of residential energy use," Simulation, vol. 30, pp. 69–74, 1978, [Online]. Available: https://doi.org/10.1177%2F003754977803000301.
- [20] L. A.; Bolinger and R. Evins, "HUES: A holistic urban energy simulation platform for effective model integration," in *Proceedings of International* Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, 2015, pp. 841–846, doi: 10.5075/epfl-cisbat2015-841-846.