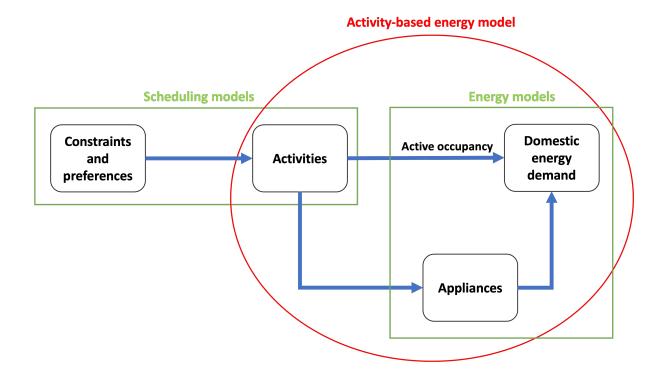


Joint modelling of household activity patterns and domestic energy demand

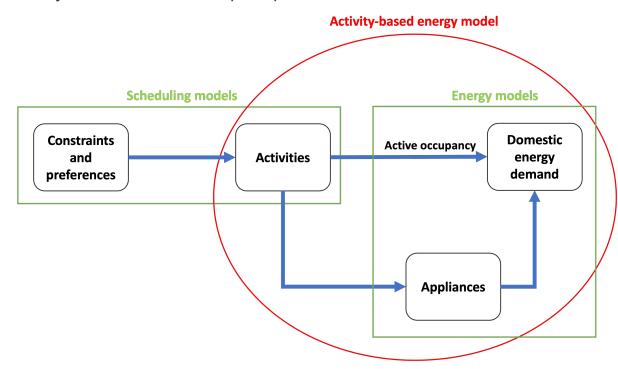
EPFL About me

- 3rd year PhD candidate
 - Transport and Mobility Laboratory (TRANSP-OR), EPFL, Lausanne, Switzerland
 - Supervisors: Prof. Michel Bierlaire (EPFL), Dr. Tim Hillel (UCL)
- Bachelors and Masters in Civil Engineering, Sharif University of Technology, Tehran, Iran
- Visiting researcher at UCL (March June 2023)


EPFL Motivation

- **Domestic energy usage** can be considered as being derived from the **activity patterns** of individuals inside the home (Rezvany et al. 2021).
- Domestic energy usage: energy used in residential buildings including electricity, heating, and hot water.
- As such an activity-based energy demand model that can create in-home energy usage profiles from household activity patterns is the key to a better building energy demand analysis.

EPFL Activity-based models (ABMs)


- Activity-based models portray how people plan their activities and travels over a period of time such as a day.
- This approach has been of **interest** to **transport modellers** as the demand for travel is assumed to be driven by participation in activities which are distributed in space and time.
- However, using ABMs in the domain of domestic energy demand research is still very limited and the human behaviour element is frequently neglected in the energy demand literature.

EPFL Activity-based energy demand scheme

EPFL High-level research question

High-level research question: "How can we simulate the domestic energy demand from household activity schedules from first principles?"

EPFL Research questions

- In order to answer this high-level question, we should answer the following research questions:
- 1. How to incorporate **in-home** and **out-of-home activity scheduling** in a **single** scheduling model with **intra-household interactions**?
- 2. How can we create in-home energy usage profiles from household activity patterns?

EPFL Research question 1

- 1. How to incorporate **in-home** and **out-of-home activity scheduling** in a **single** scheduling model with **intra-household interactions**? (Rezvany et al. 2023)
 - A framework for joint simulation of in- and out-of-home activities, capturing intra-household interactions

EPFL Intra-household interactions: motivation

- Individuals do not plan their day in isolation from other members of the household.
- Various interactions, time arrangements, and constraints affect the in-home as well as out-of-home activity schedules of individuals.

EPFL Example intra-household interactions

- What are some examples of intra-household interactions?
 - Individuals in a household synchronize their schedules to create time window overlaps for **joint activities**.

Joint participation in a recreational activity

A family dinner at home

EPFL Example intra-household interactions

- What are some examples of intra-household interactions?
 - Household members coordinate their travels as well.

Escorting children

Sharing a ride

11

EPFL Example intra-household interactions

- What are some examples of intra-household interactions?
 - The members of a household also **share responsibilities and resources** with each other to satisfy household needs.

Sharing household maintenance responsibilities

Sharing resources

EPFL Importance of capturing intra-household interactions in ABMs

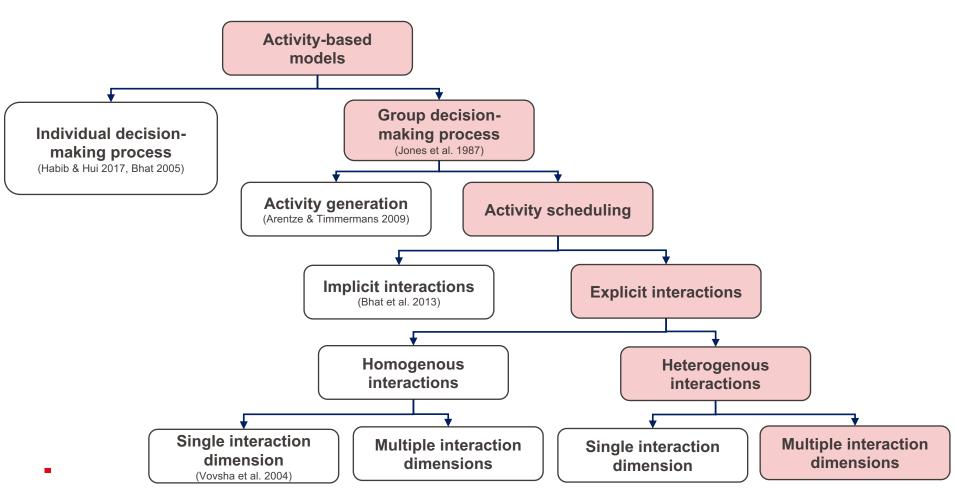
- How can intra-household interactions affect the schedule of individuals?
 - Policies directly affecting the activity and travel patterns of an individual, such as earlier school starting times, can affect the schedule of multiple household members.

13

- Joint activities require coordination between the schedules of participating individuals.
- Resource constraints affect the scheduling choices of individuals.
- The escorting duty affects the schedule and travel patterns of the adult members as they should accommodate the pick-up and drop-off activities into their schedule.

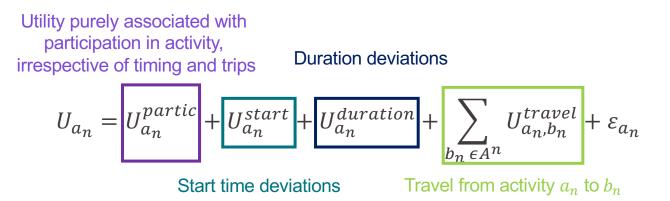
Considering the interpersonal dependencies in a household, the activity schedule should be addressed from a **group decision-making point-of-view** rather than isolated agents.

EPFL What is the current state of the research in activity-based modelling?


- Activity scheduling process has been of interest to transportation activity-based modelers in the last decades (e.g. *Hilgert et al. 2017, Bhat et al. 2004, Bowman & Ben-Akiva 2001, Adler and Ben-Akiva 1979*) as the demand for travel is assumed to be driven by participation in activities distributed in space and time.
- Most of the conventional activity-based models in transportation research are based on individual decision-making process where the individuals are treated as isolated agents whose choices are independent of other decision-makers.
- However, ignoring the interdependence between household members causes a biased simulation of activity-travel schedules as the schedule of household members are mutually dependent.
- Studies on group choice models are limited.

EPFL Gap in the current literature

EPFL Contributions and scope


- A framework to simulate the daily activity schedules of individuals in a household, explicitly accommodating multiple interactions:
 - Group decision-making paradigm
 - **Explicit** interactions
 - Ensures consistency of choices.
 - Multiple interaction dimensions
 - High level of flexibility
 - Mixed-integer utility optimisation approach
 - Heterogenous decision-making
 - Both in- and out-of-home scheduling are simulated within the same framework
 - Allows modellers to capture the trade-offs between in- and out-of-home activities (e.g. in- and out-of-home activity location choices).
 - Understanding behaviour and interactions throughout the day is the key to better demand-side management and adapting infrastructure systems (e.g. transportation, energy) to deliver critical services that meet the needs of society.

EPFL Methodology

- Our approach adopts the Optimisation-based Activity Scheduling Integrating Simultaneous choice dimensions (OASIS) framework (*Pougala et al. 2022*):
 - A mixed-integer utility optimisation approach
 - Explicitly captures trade-offs between choices
 - At the level of isolated individuals
 - Focuses on out-of-home activity schedules
 - Is defined under a set of constraints that determines the validity of the schedules at an individuallevel such as:
 - Time budget constraints,
 - Time window constraints,
 - Boundary conditions,
 - No duplicates,
 - Activity succession constraints, and
 - Time consistency between two consecutive activities: each activity starts when the trip following the previous activity is finished.

EPFL Base OASIS: Isolated agents

- Objective: $\Omega_n = \max U_n$
- Utility of a schedule: $U_n = \sum_{a_n} \omega_{a_n} U_{a_n}$
 - For individual n, considering activity a_n :

EPFL OASIS with interactions:

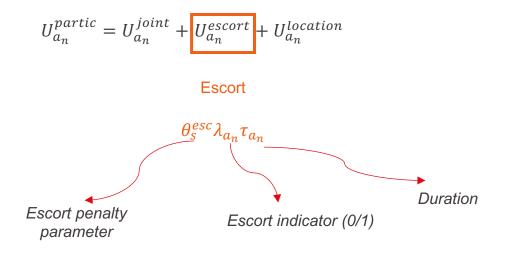
Agents with intra-household interactions

- **Fundamental assumption**: individuals do not plan their day in isolation from other members of the household.
- The framework considers the household as a single decision-making unit while encompassing the activity scheduling behaviour of all agents through the utility that each agent derives from their schedules.
- Agents schedule their day to **maximize the total combined utility** of the **household**.

$$\Omega = max \sum_{n=1}^{n=N_m} w_n U_n$$

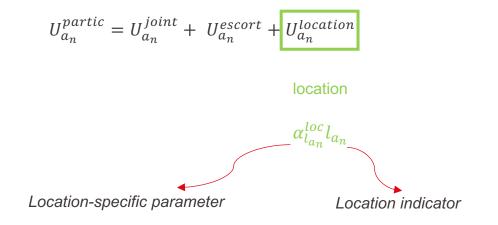
agent priority parameter

 It accounts for both individuals' constraints and the constraints that appear due to interpersonal dependencies within household members.



- We first ensure that the possible interaction aspects are captured in the utility function.
 - A term capturing the reward of joint activity participation with other member(s) of the household, compared to solo participation in the activity.

$$U_{a_n}^{partic} = U_{a_n}^{joint} + U_{a_n}^{escort} + U_{a_n}^{location}$$
Joint activity participation
$$\alpha_{a_n}^{jnt} p_{a_n}$$
Joint activity engagement
parameter
Joint participation indicator (0/1)



- We first ensure that the possible interaction aspects are captured in the utility function.
 - A term capturing the penalty of escorting other agent(s).

- We first ensure that the possible interaction aspects are captured in the utility function.
 - a term capturing the utility of different activity location choices.

EPFL Objective utility

 $n=N_m$

 Agents in the household solve an optimization problem with the objective to maximize the household utility:

. .

$$max \sum_{n=1}^{n=N_m} \sum_{a_n \in A^n} w_n U_{a_n}$$

$$\max \sum_{n=1} \sum_{a_n \in A^n} w_n \left(U_{a_n}^{partic} + U_{a_n}^{start} + U_{a_n}^{duration} + \sum_{b_n \in A^n} U_{a_n, b_n}^{travel} + \varepsilon_{a_n} \right)$$

EPFL Constraints

- Specify the model constraints such that they allow the **integration** of **in-home activities** alongside activities **outside** the home in **a single framework**.
- Define household-level constraints to explicitly capture the interplays as within-household interactions lead to additional and more complex constraints.
 - · Household private vehicle ownership,
 - · Allocation of the resources to household members,
 - · Sharing household maintenance responsibilities,
 - Joint participation of household members in activities,
 - Joint travels, and
 - Escorting.

EPFL An example household-level constraint

- Allocation of private vehicle to household members: The availability and allocation of private vehicle is necessary in auto-deficient households.
- The private vehicle is an example of a **moving resource**.
- Resources have no independent decision-making capabilities and are purely used by and dependent on the decision-making agents.
- We treat the private vehicle as a **resource**, which has an **event schedule**.
- The moving resources such as private vehicle need a **driver** to move them.
- Thus, the **schedule** of the **moving resources** is **constrained** to that of the **agents**.
- This approach can be used for modelling any household resource.
- This approach for modelling the resource constraints provides valuable information such as the resource location and occupancy.

25

EPFL Examples of household-level constraints

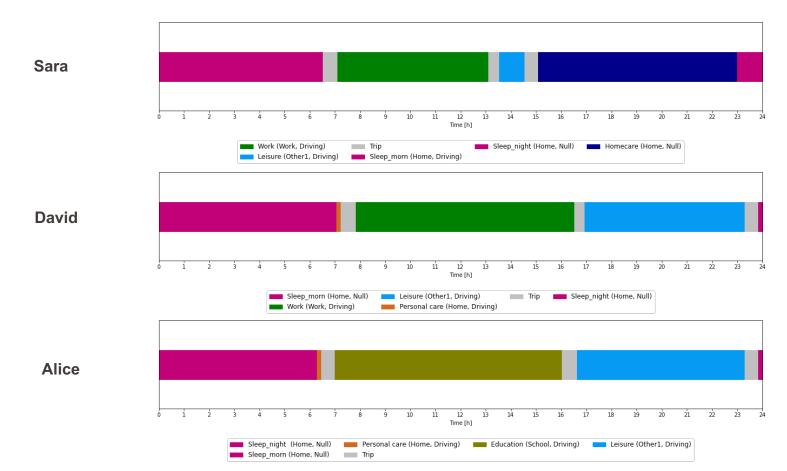
Allocation of private vehicle to household members:

Algorithm : Allocation of private vehicle to household members

1 for $n : n \in Adults$ do for $a : a_n \in A^n$ and $a_V \in A^V$ do 2 $\omega_{a_{v}} = \omega_{a_{n}};$ 3 if $\ell_{a_n} \in \{Home\}$ then 4 $\mathbf{x}_{a_{V}} = \mathbf{x}_{a_{n}} + \mathbf{\tau}_{a_{n}};$ 5 $\tau_{a_{V}} = \sum_{b_{n} \in A^{n}} (z_{a_{n}b_{n}} \rho(\ell_{a_{n}}, \ell_{b_{n}}, \text{Driving}));$ 6 else if $\ell_{a_n} \notin \{Home\}$ then 7 $x_{a_V} = x_{a_n};$ 8 $\tau_{a_{\mathcal{V}}} = \tau_{a_{\mathcal{D}}} + \sum_{b_{\mathcal{D}} \in A^{\mathcal{D}}} (z_{a_{\mathcal{D}}b_{\mathcal{D}}} \rho(\ell_{a_{\mathcal{D}}}, \ell_{b_{\mathcal{D}}}, \text{Driving}));$ 9 end 10 end 11 12 end

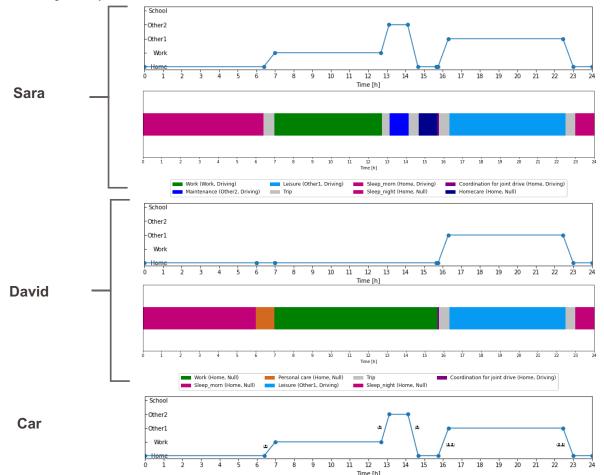
EPFL OASIS with interactions:

Agents with intra-household interactions


Inputs:

- Household composition,
- Scheduling preferences,
- Activity flexibilities,
- · Activity choice set, and
- · Household resources and their associated events set.

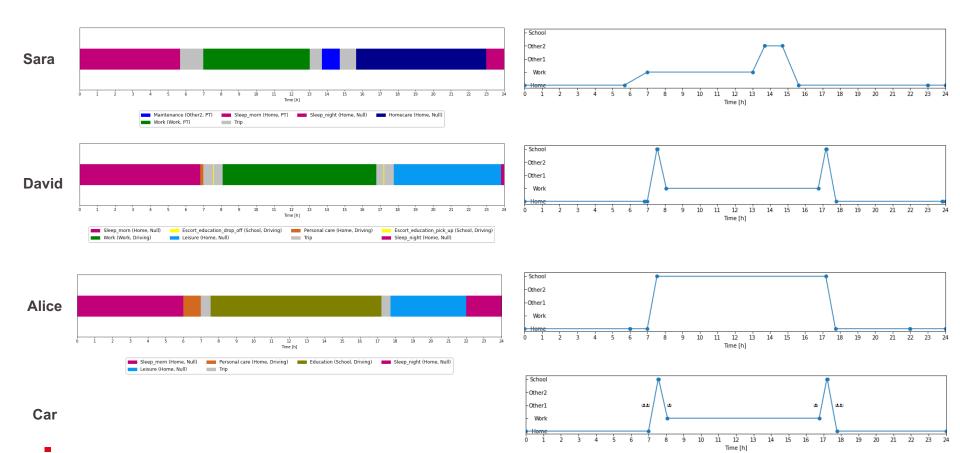
• Output:


• A realisation from the distribution of valid schedules, under both individual- and household-level constraints and preferences.

EPFL Simulation From isolated individuals...

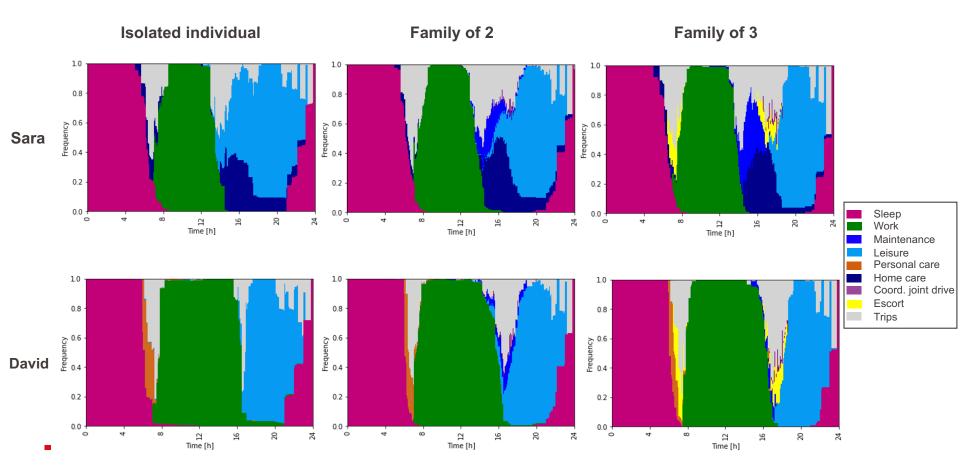
EPFL Simulation To family of 2: 2 adults y

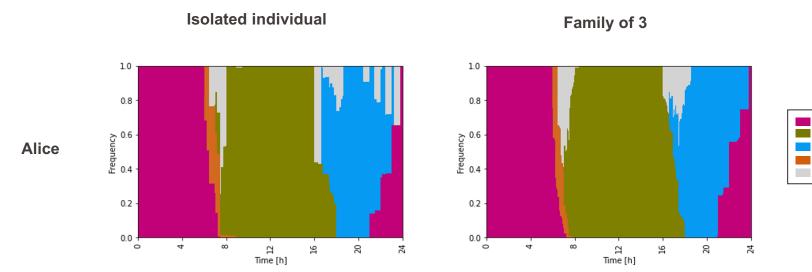
To family of 2; 2 adults with no children...



EPFL Simulation Family of 2; 2 adults with no children

Location	Start time (hh:mm)	End time (hh:mm)	Duration (hh:mm)	Person using	Parked_out indicator	Car occupancy
Home	00:00	6:24	6:24	-	0	0
On the road	6:24	7:00	0:36	1	0	1
Work	7:00	12:41	5:41	1	1	0
On the road	12:41	13:07	0:26	1	0	1
Other2	13:07	14:07	1:00	1	1	0
On the road	14:07	14:40	0:33	1	0	1
Home	14:40	15:45	1:05	-	0	0
On the road	15:45	16:18	0:33	1&2	0	2
Other1	16:18	22:27	6:08	1&2	1	0
On the road	22:27	23:00	0:33	1&2	0	2
Home	23:00	24:00	1:00	-	0	0


Table 1: Car location sequence and occupancy in the example of family of 2


EPFL Simulation To family of 3; 2 adults and 1 child...

31

EPFL Distributions

Sleep Education

Leisure Personal care Trips

EPFL Summary Research Question 1:

How to incorporate in-home and out-of-home activity scheduling in a single scheduling model with intra-household interactions?

- General framework
- Group decision-making mechanism; activity scheduling at the level of the household
- Explicit interactions
- Capture resource constraints
- Flexible framework; interaction dimensions can be arbitrarily added
- Operationalised model

EPFL Research question 2

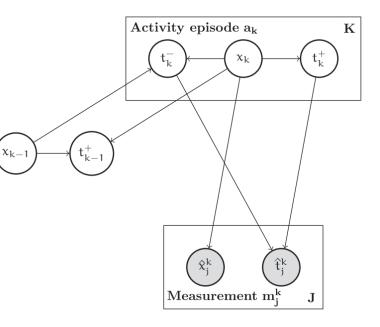
How can we create in-home energy usage profiles from activity patterns?

- Goal: find the relation between building energy usage and activity profiles
 - Ideal scenario: overlapping energy usage data with activity diary survey data
 - *Pragmatic scenario*: However, there is **no data** containing information on **both household activity schedules** and **energy usage**.
- BUT we have detailed data on building energy usage, as well as, detailed time-use-data, separately (no overlap between data).

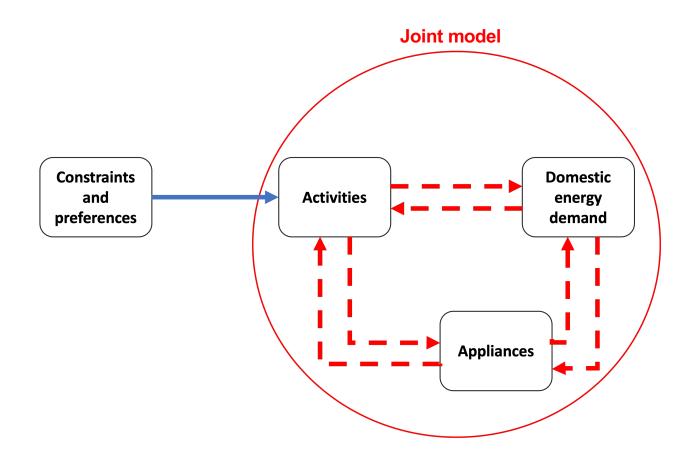
EPFL How can we infer activity patterns from in-home energy usage profiles?

- New goal: How do we use energy data to enhance existing activity models?
 - Add functionality to ABM model
 - Generate energy demand profiles
 - Without having overlapping data to train it

- We looked in the literature to see if anyone tried to link energy and activity data to create a joint model.
- Now, however, there are parallels to similar problems in other contexts (e.g. detecting pedestrian activity patterns from WiFi signatures)

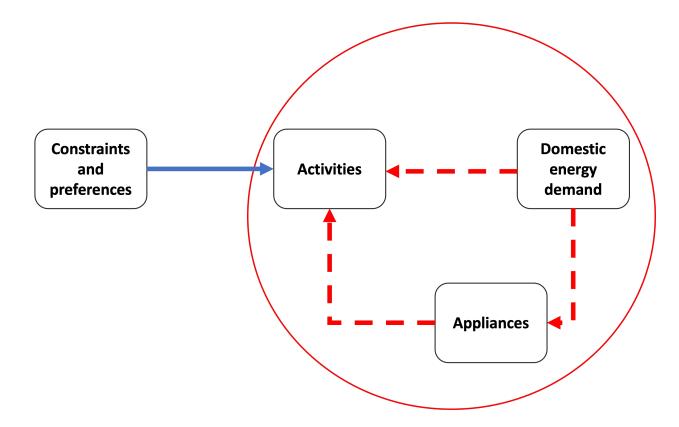

EPFL From Wifi traces to activity episodes

- Wifi traces are not accurate; either precise sensors with incomplete coverage or full coverage with imprecise sensors.
- As a result, data are **scarce**, **fuzzy**, or both.
- How this is relevant to our problem?
 - Cooking hob on → We do not know if they are doing another activity on the side/ multiple people are helping in the cooking at the same time → not exact indication of the start and end time of food preparation process → Noisy representation of activity → need a joint probabilistic model


Appliance use *≠* Activity pattern

EPFL A Bayesian approach to detect pedestrian destination-sequences from WiFi signatures (Danalet et al. 2014)

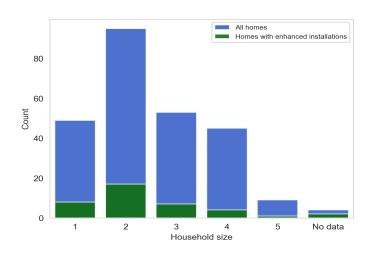
- Goal: extract the possible activity-episode sequences performed by pedestrians from digital traces in a communication network.
- Methodology: a Bayesian approach merges measured network traces and pedestrian semantically-enriched routing graph to compute the likelihood that a given sequence of activity episodes has actually generated the observed traces.
- Output: candidate activity schedules associated with the likelihood to be the true one.


EPFL Schematic view of our approach

EPFL Methodological approach

 A Bayesian approach merging the measured appliance energy usage profiles and semantically-enriched activity-appliance usage profiles to compute the likelihood that a given sequence of activity episodes has actually generated the observed appliance energy profiles.

EPFL Schematic view of our approach

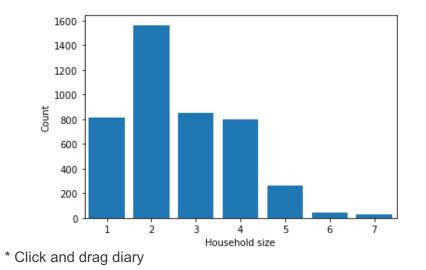

EPFL Datasets

Energy dataset

Intelligent Domestic Energy Advice Loop (IDEAL)

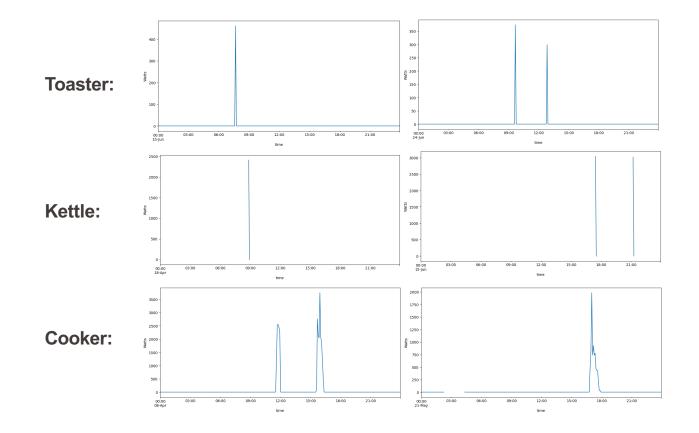
(Pullinger et al., 2021; Goddard et al., 2021)

- Comprises data from 255 homes in Edinburgh and the nearby regions, 2016-2018.
- Contains enhanced appliance-level energy monitors in 39 of 255 homes.

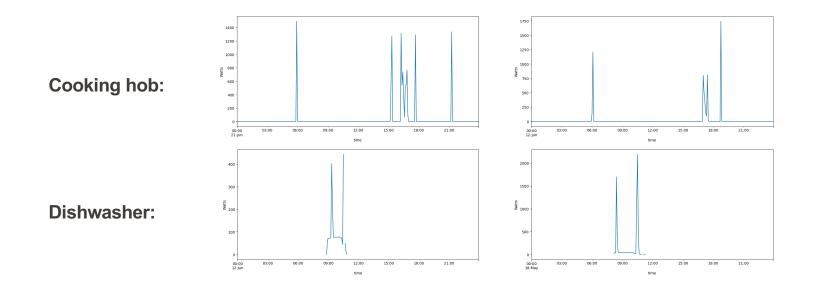


Time use survey

CaDDI* survey - 2016-2020 UK TUS


(Gershuny and Sullivan, 2021)

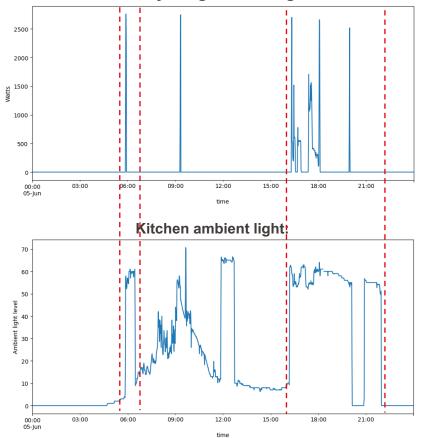
- 4'360 diaries from 2'202 individuals across 4 waves, 2016-2020
- Contains 1 to 3 time-use diaries per respondent (include 1 weekday and 1 weekend day)



42

EPFL Exploration of data: Appliance energy profiles

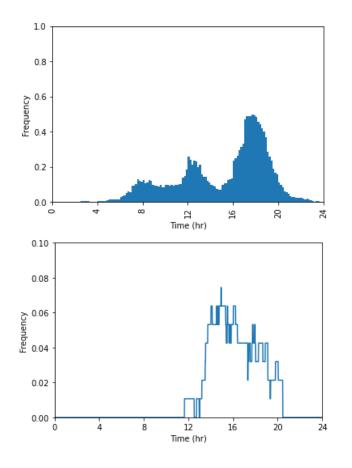
EPFL Exploration of data: Appliance energy profiles



 \rightarrow looking for a set of patterns and rules...

 \rightarrow need a probabilistic joint model to relate energy profiles to activity patterns

EPFL Exploration of data: Ambient light-level vs energy profiles


Electricity usage – cooking hub:

EPFL Exploration of data: Parallels at aggregate level

Distribution of "Preparing food/cooking" activity:

Distribution of "electric oven" usage:

EPFL To conclude

On-going research:

- Joint model of domestic energy and activity profiles
- Recreate household activity patterns from domestic energy usage profiles
- Non-overlapping data
- Probabilistic model Bayesian approach

EPFL Related publications

- Rezvany, N., M. Bierlaire and T. Hillel (2023) Simulating intra-household interactions for in- and out-of-home activity scheduling, Technical Report.
- Rezvany, N., T. Hillel and M. Blerlaire (2021) Integrated models of transport and energy demand : A literature review and framework, Proceedings of the 21st Swiss Transport Research Conference (STRC), 12-14 September, Ascona, Switzerland.

 École polytechnique fédérale de Lausanne

- Adler, T., Ben-Akiva, M., 1979. A theoretical and empirical model of trip chaining behavior. Transp. Res. Part B Methodol. 13 (3), 243–257.
- Arentze, T. A. & Timmermans, H. J. (2009), 'A need-based model of multi-day, multi-person activity generation', Transp. Res. Part B Methodol. 43 (2), 251–265.
- Bhat, C. R. (2005), 'A multiple discrete-continuous extreme value model: Formulation and application to discretionary time-use decisions', Transp. Res. Part B Methodol. 39 (8), 679–707.
- Bhat, C. R., Guo, J. Y., Srinivasan, S. & Sivakumar, A. (2004), 'Comprehensive Econometric Microsimulator for Daily Activity-Travel Patterns', Transp. Res. Rec. 1894 (1), 57–66.
- Bhat, C. R., Goulias, K. G., Pendyala, R. M., Paleti, R., Sidharthan, R., Schmitt, L. & Hu, H. H. (2013), 'A household-level activity pattern generation model with an application for Southern California', Transportation (Amst). 40(5), 1063–1086.
- Bowman, J. L. & Ben-Akiva, M. E. (2001), 'Activity-based disaggregate travel demand model system with activity schedules', Transp. Res. Part A Policy Pract. 35 (1), 1–28.
- Danalet, A., B. Farooq and M. Bierlaire (2014) A Bayesian approach to detect pedestrian destination-sequences from WiFi signatures, Transp. Res. Part C Emerg. Technol., 44, 146–170, ISSN 0968090X.
- Gershuny, J. and O. Sullivan (2021) United Kingdom Time Use Survey Sequence Pre and During COVID-19 Social Restrictions.
- Goddard, N., J. Kilgour, M. Pullinger, D. Arvind, H. Lovell, J. Moore, D. Shipworth, C. Sutton, J. Webb, N. Berliner, C. Brewitt, M. Dzikovska, E. Farrow, E. Farrow, J. Mann, E. Morgan, L. Webb and M. Zhong (2021) IDEAL Household Energy Dataset [dataset].
- Habib, K. M. & Hui, V. (2017), 'An activity-based approach of investigating travel behaviour of older people', Transportation (Amst). 44 (3), 555–573.
- Hilgert, T., Heilig, M., Kagerbauer, M. & Vortisch, P. (2017), 'Modeling week activity schedules for travel demand models', Transp. Res. Rec. 2666 (2666), 69–77.
- Jones, P., Dix, M. C. & Clarke, M. I. (1987), Understanding travel behaviour, Brookfield Vt: Gower, Aldershot, England.
- Pougala, J., Hillel, T. & Bierlaire, M. (2022), OASIS: Optimisation-based Activity Scheduling with Integrated Simultaneous choice dimensions, Technical report.

- Pullinger, M., J. Kilgour, N. Goddard, N. Berliner, L. Webb, M. Dzikovska, H. Lovell, J. Mann, C. Sutton, J. Webb and M. Zhong (2021) The IDEAL household energy dataset, electricity, gas, contextual sensor data and survey data for 255 UK homes, Sci. Data.
- Rezvany, N., T. Hillel and M. Blerlaire (2021) Integrated models of transport and energy demand : A literature review and framework, paper presented at the Swiss Transp. Res. Conf., no. September, Ascona, Switzerland.
- Rezvany, N., M. Bierlaire and T. Hillel (2023) Simulating intra-household interactions for in- and out-of-home activity scheduling, Technical Report.
- Srinivasan, K. K. & Athuru, S. R. (2005), 'Analysis of within-household effects and between-household differences in maintenance activity allocation', Transportation (Amst). 32 (5), 495–521.
- Vovsha, P., Petersen, E. & Donnelly, R. (2004), 'Model for allocation of maintenance activities to household members', Transp. Res. Rec. (1894), 170–179.
- Zhang, J. & Fujiwara, A. (2006), 'Representing household time allocation behavior by endogenously incorporating diverse intra-household interactions: A case study in the context of elderly couples', Transp. Res. Part B Methodol. 40(1), 54–74.