From moving vehicles to moving people: mobility as a service

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

April 9, 2018
Outline

1 Back to the future

2 Mobility as a service

3 Transport and Mobility Laboratory @ EPFL

4 Timetables

5 Choice models and optimization

6 Accelerating moving walkways

7 Conclusion
Future of transportation systems
Future of transportation systems

- [Wilkie, 1970] A moving cell control scheme for automated transportation systems
Future of transportation systems

- [Wilkie, 1970] A moving cell control scheme for automated transportation systems
- [Hajdu et al., 1968] Design and control considerations for automated ground transportation system
Future of transportation systems

- [Wilkie, 1970] A moving cell control scheme for automated transportation systems
- [Hajdu et al., 1968] Design and control considerations for automated ground transportation system
- [Edwards, 1965] High-speed tube transportation
Future of transportation systems

- [Wilkie, 1970] A moving cell control scheme for automated transportation systems
- [Hajdu et al., 1968] Design and control considerations for automated ground transportation system
- [Edwards, 1965] High-speed tube transportation
What has changed?
What has changed?

Technology
What has changed?

Behavior
Mobility as a service

Outline

1. Back to the future
2. Mobility as a service
3. Transport and Mobility Laboratory @ EPFL
4. Timetables
5. Choice models and optimization
6. Accelerating moving walkways
7. Conclusion
Mobility as a service
A mobility distribution model that deliver users’ transport needs through a single interface of a service provider.
Core characteristics [Jittrapirom et al., 2017]

Integration of transport modes
- Multi-modal
- Encourage public transportation
- Beyond the city boundaries: flights, ferries, etc.

Tariff options
- Mobility package
- Pay as you go

One platform
- Digital platform
- All services available: planning, booking, tickets, payment, real-time information
Core characteristics [Jittrapirom et al., 2017]

Multiple actors
- Travelers
- Mobility suppliers
- Platform owners
- Local authorities

Use of technologies
- Smartphones
- 3G, 3G, WiFi
- GPS
- e-ticketing, e-payment
- IoT
- Data management
Core characteristics [Jittrapirom et al., 2017]

Demand orientation
- User-centric paradigm
- Best from customer’s perspective
- Demand responsive

Registration requirement
- Individual or household
- Necessary for payment
- Service personalization
Core characteristics [Jittrapirom et al., 2017]

Personalization
- Every user has different needs
- Tailor-made solutions
- Social network

Customization
- Modify the options
- Increases loyalty and satisfaction
Mobility as a service

Key challenges [Jittrapirom et al., 2017]

- Demand-side modeling
- Supply-side modeling
- Governance and business model to match supply and demand
Demand responsive transportation systems
Demand responsive transportation systems

Google Scholar: Demand responsive transportation 1960–1970

- [Vitt et al., 1970] Determining the importance of user-related attributes for a demand-responsive transportation system
- [Howson and Heathington, 1970] Algorithms for Routing and Scheduling in Demand-Responsive Transportation Systems
- [Canty, 1970] The demand-responsive jitney: a socially-oriented transportation system design study
- [Hall, 1970] Results of a personalized transit study
Demand responsive transportation systems

What has changed?
- Technology
- Behavior
Outline

1. Back to the future
2. Mobility as a service
3. Transport and Mobility Laboratory @ EPFL
4. Timetables
5. Choice models and optimization
6. Accelerating moving walkways
7. Conclusion
Research avenues

- Operations research
- Demand models
- Transportation systems

Research team

- 5–10 PhD students
- 3–5 postdocs
Timetables

Source: Bradshaw’s Guide

<table>
<thead>
<tr>
<th>Station</th>
<th>Down</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>York</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Haxby</td>
<td>7.0</td>
<td>7.7</td>
</tr>
<tr>
<td>Stremsall</td>
<td>7.7</td>
<td>7.12</td>
</tr>
<tr>
<td>Flaxton</td>
<td>7.12</td>
<td>7.20</td>
</tr>
<tr>
<td>Barton</td>
<td>7.20</td>
<td>7.25</td>
</tr>
<tr>
<td>Kirkham</td>
<td>7.25</td>
<td>7.35</td>
</tr>
<tr>
<td>Castle Howard</td>
<td>7.35</td>
<td>7.39</td>
</tr>
<tr>
<td>Hutton</td>
<td>7.39</td>
<td>7.45</td>
</tr>
<tr>
<td>Whitby</td>
<td>7.45</td>
<td>8.45</td>
</tr>
<tr>
<td>Pickering</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Whitby Branch</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Levisham</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Goathland</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Grosmont</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Sleights</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Rusward</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Whitby Branch</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Knpton</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Castle Howard</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Kirkham</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Barton</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Flaxton</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Stremsall</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Haxby</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>York</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Notes:
- Timetables from York to Whitby, including stops at Haxby, Knpton, Castle Howard, Kirkham, Barton, and Flaxton.
- Fares from York to Whitby vary depending on distance.
- Special timetables for Sundays and Mondays.

Source: Bradshaw’s Guide
Timetables

Definition
Set of arrival and departure times of each train at each of its stopping stations.

Input
- Train lines
- Stopping patterns
- Train frequency
Cyclic timetables
- Difference between the departure times of two consecutive trains is constant.
- Typically, cycle is 30 or 60 minutes.

Non-cyclic timetables
- No constraint on departure times
- Just buffer time for safety and robustness
Cyclic timetables

Advantages [Graffagnino, 2014]

- attractiveness for the passengers
- gain of efficiency for the overall system
- difficulty to manage a non-cyclic tailor made timetable

Issues

- Costs
- Empty trains
Non-cyclic timetables

Advantages
- Flexibility
- Possibility to adjust to the demand

Issues
- Difficult to implement in practice
- Rolling stocks and crew management more complicated
- Lack of robustness
Hybrid Cyclicity [Robenek et al., 2017]

Motivation

- Combine the advantages of both types
- Passenger-centric design

Definitions

- θ shifted cyclic timetable
- ξ partially cyclic timetable
- Hybrid cyclic timetable
Hybrid Cyclicity [Robenek et al., 2017]

θ shifted cyclic timetable
- Inspired by [Caimi et al., 2011]
- Allow small deviations from strict cyclicity
- If t is the cyclic departure time, values within $[t - \theta, t + \theta]$ are allowed
- $\theta \leq c/2$
- $\theta = c/2$: non-cyclic, $\theta = 0$: cyclic
Hybrid Cyclicity [Robenek et al., 2017]

ξ partially cyclic timetable

- A proportion ($\xi\%$) of trains on a given line can be non-cyclic.
- Decisions to make: what trains are cyclic and what are not?
- Let η be the number of trains on the most used line (say, 16).
- If $\xi = 50\%$, we impose cyclicity on $\eta\xi = 8$ trains per line.
- $\xi = 0$: non-cyclic, $\xi = 100$: cyclic.
Hybrid cyclic timetable

Motivation
Parametric relaxations (θ and ξ) generate complicated timetables, similar to the non-cyclic ones.

Principle
- Schedules non-cyclic trains only in the cycles were there is already a cyclic train being scheduled.
- Same level of service as a cyclic timetable.
- With more flexibility.
Passenger satisfaction

Generalized travel time
- in-vehicle-time
- waiting time at transfers (2.5 min. [Wardman, 2004])
- number of transfers (10.0 min. [de Keizer et al., 2012])
- schedule passenger delay: early arrival (0.5 min. [Small, 1982])
- schedule passenger delay: late arrival (1.0 min. [Small, 1982])

Generalized cost
Use the value of time to transfer travel time into cost.
Case study: Israeli railways
θ-hybrid [Robenek et al., 2017]
ξ-hybrid [Robenek et al., 2017]
Passenger satisfaction [Robenek et al., 2017]
Beyond timetabling

[Intobenek et al., 2018]

Integrate:
- Timetabling
- Demand forecasting
- Pricing

Methodology

Integrate discrete choice models into optimization
Example: the taxi driver

Context

- A taxi driver has two categories of regular customers:
 - students (2/3 of his clients)
 - business (1/3 of his clients)
- Uber has started to operate in the city.
- How to re-design his prices to optimize his revenues?
Demand model

Discrete choice model
- Two alternatives: the taxi ($i = 1$) and Uber ($i = 2$)
- Two types of customers: students ($n = s$) and business ($n = b$)

Utility functions

$$
U_{1s} = -0.3p_1 + 0 \\
U_{2s} = -0.3p_2 + 3 \\
U_{1b} = -0.05p_1 + 1 \\
U_{2b} = -0.05p_2 + 0
$$

Logit

$$
P_n(i|C_n) = \frac{e^{V_{in}}}{\sum_{j \in C_n} e^{V_{jn}}}
$$
Optimization problem

Price: 20 €

Price: ???
Demand

The graph shows the demand for different market segments (Students, Business, and Market share) as a function of price. The demand decreases as the price increases, indicating a typical demand curve. The market share segment shows the highest initial demand, followed by students and then business, although all segments decrease significantly with increasing price.
Demand and revenues

![Graph showing demand and revenues as functions of price for different categories: Students, Business, and Revenues. The graph indicates a decrease in demand and an increase in revenues as the price increases.]
Optimization

Difficult problem

- Non linear
- Non convex/concave
- Multiple local optima

Idea: [Pacheco et al., 2017]

Transform the choice model into a MILP formulation
The main idea

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.
The main idea

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem
The main idea

Linearization
- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles
Each customer solves an optimization problem

Solution
Use the utility and not the probability
A linear formulation

Utility function

\[U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}. \]

Simulation

- Assume a distribution for \(\varepsilon_{in} \)
- E.g. logit: i.i.d. extreme value
- Draw \(R \) realizations \(\xi_{inr} \), \(r = 1, \ldots, R \)
- The choice problem becomes deterministic
Scenarios

Draws

- Draw R realizations $\xi_{inr}, r = 1, \ldots, R$
- We obtain R scenarios

$$U_{inr} = \sum_k \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.
Current results

Good news
Current results

Good news

- It works!
- For any type of choice model
- We tried it on a mixture of logit model from the literature
Current results

Good news

- It works!
- For any type of choice model
- We tried it on a mixture of logit model from the literature

Not so good news

- Large scale problem: many draws, many individuals
- Only small instances can be solved with standard software
- We are working on dedicated algorithms (decomposition methods)
Current results

Good news

- It works!
- For any type of choice model
- We tried it on a mixture of logit model from the literature

Not so good news

- Large scale problem: many draws, many individuals
- Only small instances can be solved with standard software
- We are working on dedicated algorithms (decomposition methods)

Extensions

- Behavioral game theory
- Revenue management
Outline

1. Back to the future
2. Mobility as a service
3. Transport and Mobility Laboratory @ EPFL
4. Timetables
5. Choice models and optimization
6. Accelerating moving walkways
7. Conclusion
Accelerated Moving Walkways
Accelerated Moving Walkways

The future of urban transport
Click here for the video
Conclusion

Mobility as a service

- Modern concept
- Integrated system
- Relies on recent technologies
- Demand driven

Research challenges

- Technology
- Behavior
Dank u wel!
Dank u wel!

Key contributors
- Bernard Gendron
- Virginie Lurkin
- Yousef Maknoon
- Meritxell Pacheco
- Tomas Robenek
- Riccardo Scarinci
- Shadi Sharif Azadeh
Dank u wel!

Key contributors
- Bernard Gendron
- Virginie Lurkin
- Yousef Maknoon
- Meritxell Pacheco
- Tomas Robenek
- Riccardo Scarinci
- Shadi Sharif Azadeh

Online course edX.org
Introduction to discrete choice models
Bibliography I

Bibliography III

Merging in automated transportation systems.
PhD thesis, Massachusetts Institute of Technology.

Cyclic timetable improvement with train traffic data analysis.

Design and control considerations for automated ground transportation systems.

Results of a personalized transit study.
In *Arizona Conf Roads & Streets Proc.*
Bibliography IV

Bibliography VI

Train timetable design under elastic passenger demand.
Transportation Research Part B: Methodological.
Accepted for publication.

The scheduling of consumer activities: work trips.

Determining the importance of user-related attributes for a demand-responsive transportation system.