A Lagrangian relaxation technique for the demand-based benefit maximization problem

Meritxell Pacheco
Bernard Gendron Virginie Lurkin
Shadi Sharif Azadeh Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
École Polytechnique Fédérale de Lausanne

17/05/2018
Outline

1 Introduction

2 Demand-based benefit maximization problem

3 Decomposition by operator and customers

4 Decomposition by customers and draws

5 Conclusions and future work
Introduction

Demand-based benefit maximization problem

Decomposition by operator and customers

Decomposition by customers and draws

Conclusions and future work
Discrete choice models and optimization

- Behavioral realism
- Unrealistic assumptions
- Complex formulations

- Tractability
- Linearity and/or convexity
- MILP models
Bridging the gap

- General framework integrating a choice model with an MILP model
- Simulation to linearize the discrete choice model
- Demand-based benefit maximization problem
Lagrangian relaxation

MILP

\[
Z = \max cx + fy \\
\text{s.t. } Ax \leq b \\
Bx + Dy \leq e \\
Gy \leq h \\
x, y \geq 0 \\
y \text{ integer}
\]

Lagrangian subproblem

\[
Z_D(\lambda) = \max cx + fy + \lambda(e - Bx - Dy) \\
\text{s.t. } Bx + Dy \leq e \\
Gy \leq h \\
x, y \geq 0 \\
y \text{ integer}
\]

Lagrangian dual

\[
Z_D = \min_{\lambda} Z_D(\lambda)
\]

\[
Z_D(\lambda) \geq Z
\]
Lagrangian relaxation

MILP

\[
Z = \max cx + fy \\
\text{s.t. } Ax \leq b \\
Bx + Dy \leq e \\
Gy \leq h \\
x, y \geq 0 \\
y \text{ integer}
\]

Lagrangian subproblem

\[
Z_D(\lambda) = \max cx + fy + \lambda(e - Bx - Dy) \\
\text{s.t. } Bx + Dy \leq e \\
Gy \leq h \\
x, y \geq 0 \\
y \text{ integer}
\]

Lagrangian dual

\[
Z_D = \min_{\lambda} Z_D(\lambda)
\]

\[
Z_D(\lambda) \geq Z
\]
Lagrangian relaxation

\textbf{MILP}

\[Z = \max cx + fy \]
\text{s.t.} \quad Ax \leq b \]
\[Bx + Dy \leq e \]
\[Gy \leq h \]
\[x, y \geq 0 \]
\[y \text{ integer} \]

\textbf{Lagrangian subproblem}

\[Z_D(\lambda) = \max cx + fy + \lambda(e - Bx - Dy) \]
\text{s.t.} \quad Bx + Dy \leq e \]
\[Gy \leq h \]
\[x, y \geq 0 \]
\[y \text{ integer} \]

\textbf{Lagrangian dual}

\[Z_D = \min_{\lambda} Z_D(\lambda) \]

\[Z_D(\lambda) \geq Z \]
Lagrangian relaxation

MILP

\[Z = \max cx + fy \]
\[\text{s.t. } Ax \leq b \]
\[Bx + Dy \leq e \]
\[Gy \leq h \]
\[x, y \geq 0 \]
\[y \text{ integer} \]

Lagrangian subproblem

\[Z_D(\lambda) = \max cx + fy + \lambda(e - Bx - Dy) \]
\[\text{s.t. } Bx + Dy \leq e \]
\[Gy \leq h \]
\[x, y \geq 0 \]
\[y \text{ integer} \]

Lagrangian dual

\[Z_D = \min_{\lambda} Z_D(\lambda) \]

\[Z_D(\lambda) \geq Z \]
1. Introduction

2. Demand-based benefit maximization problem

3. Decomposition by operator and customers

4. Decomposition by customers and draws

5. Conclusions and future work
Demand-based benefit maximization problem

Linearization of the choice model

\[U_{in} = V_{in} + \epsilon_{inr} \]

Draw distribution

\[U_{inr} = \sum_k \beta_k x_{ink}^e + g_{in}^d(x_{in}^d) + \xi_{inr} \]

\(x^e \) endogenous variable

\(x^d \) exogenous variable (choice)

\[D_i = \frac{1}{R} \sum_{r=1}^{R} \sum_{n=1}^{N} w_{inr} \]

\[w_{inr} = \begin{cases} 1 & \text{if } U_{inr} \geq U_{jnr} \forall j \in \mathcal{C}_n, j \neq i \\ 0 & \text{otherwise} \end{cases} \]
Demand-based benefit maximization problem

Linearization of the choice model

\[U_{in} = V_{in} + \varepsilon_{inr} \]

Draw distribution

\[U_{inr} = \sum_k \beta_k x_{ink}^e + g_d^i(x_d^i) + \xi_{inr} \]

\(x^e \) endogenous variable

\(x^d \) exogenous variable (choice)

\[w_{inr} = \begin{cases} 1 & \text{if } U_{inr} \geq U_{jn} \forall j \in C_n, j \neq i \\ 0 & \text{otherwise} \end{cases} \]

\[D_i = \frac{1}{R} \sum_{r=1}^{R} \sum_{n=1}^{N} w_{inr} \]
Demand-based benefit maximization problem

Linearization of the choice model

\[U_{in} = V_{in} + \varepsilon_{inr} \]

\[U_{inr} = \sum_{k} \beta_k x_{ink} + g^d_{in}(x^d_{in}) + \xi_{inr} \]

\(x^e \) endogenous variable

\(x^d \) exogenous variable (choice)

\[w_{inr} = \begin{cases}
1 & \text{if } U_{inr} \geq U_{jn} \forall j \in \mathcal{C}, j \neq i \\
0 & \text{otherwise}
\end{cases} \]

\[D_i = \frac{1}{R} \sum_{r=1}^{R} \sum_{n=1}^{N} w_{inr} \]
Demand-based benefit maximization problem

Linearization of the choice model

$U_{in} = V_{in} + \varepsilon_{inr}$

draw distribution

$V_{in} = \sum_k \beta_k x_{ink} + g_d(x_{in}) + \xi_{inr}$

x^e endogenous variable

x^d exogenous variable (choice)

$w_{inr} = \begin{cases}
1 & \text{if } U_{inr} \geq U_{jnr} \forall j \in \mathcal{C}_n, j \neq i \\
0 & \text{otherwise}
\end{cases}$

$D_i = \frac{1}{R} \sum_{r=1}^{R} \sum_{n=1}^{N} w_{inr}$
Demand-based benefit maximization problem

Benefit maximization problem (1)

- Set of services \mathcal{C} ($i > 0$)
- Population N ($n \geq 1$)
- Price $a_i \leq p_{in} \leq b_{in}$
- Opt-out option $i = 0$
- Capacity $c_i = \sum_{q=1}^{Q} c_{iq} y_{iq}$
- Fixed f_{iq} and variable v_{iq} costs
Benefit maximization problem (2)

Expected gain:

\[G_i = \sum_{q=1}^{Q} \sum_{n=1}^{N} \sum_{r=1}^{R} \frac{1}{R} \eta_{iqnr} p_{in} w_{iqnr} \]

Operating costs:

\[C_i = \sum_{q=1}^{Q} \left(f_{iq} + v_{iq} c_{iq} \right) y_{iq} \]
Benefit maximization problem (3)

<table>
<thead>
<tr>
<th>obj. fun.</th>
<th>$\sum_{i>0} G_i - C_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>availability</td>
<td>operator level and scenario level</td>
</tr>
<tr>
<td>disc. utility</td>
<td>variable capturing availability and utility</td>
</tr>
<tr>
<td>choice</td>
<td>linearization of the highest utility</td>
</tr>
<tr>
<td>price</td>
<td>linearization of the variable η_{iqr}</td>
</tr>
<tr>
<td>capacity</td>
<td>relation with the availability at scenario level</td>
</tr>
</tbody>
</table>
Computational results

- Parking choices: mixtures of logit model
- \(R = 50 \) draws and \(N = 50 \) customers
- \(|\mathcal{C}| = 3: \) PSP, PUP and FSP (opt-out)
- Experiment testing two approaches:
 1. operator can decide to offer a service
 2. operator is forced to offer all services

<table>
<thead>
<tr>
<th>Approach</th>
<th>Solution time (h)</th>
<th>Capacity</th>
<th>Demand</th>
<th>Prices</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PSP</td>
<td>PUP</td>
<td>PSP</td>
<td>PUP</td>
</tr>
<tr>
<td>1</td>
<td>18.7</td>
<td>20</td>
<td>-</td>
<td>19.4</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>33.7</td>
<td>15</td>
<td>5</td>
<td>14.8</td>
<td>4.56</td>
</tr>
</tbody>
</table>
1 Introduction

2 Demand-based benefit maximization problem

3 Decomposition by operator and customers

4 Decomposition by customers and draws

5 Conclusions and future work
Motivation

- obj. fun.
- availability
- price

- availability
- disc. utility
- choice
- price
- capacity
Lagrangian decomposition

Duplicate w_{iqnr} and relax the copy constraint → Chain of constraints to define new relations → Price specification in the customer subproblem
Lagrangian decomposition

Duplicate w_{ignr} and relax the copy constraint \rightarrow Chain of constraints to define new relations \rightarrow Price specification in the customer subproblem
Duplicate w_{iqnr} and relax the copy constraint

Chain of constraints to define new relations

Price specification in the customer subproblem
Lagrangian decomposition

Duplicate w_{iqnr} and relax the copy constraint → Chain of constraints to define new relations → Price specification in the customer subproblem
Decomposition by operator and customers

Operator subproblem

Capacitated Facility Location Problem (CFLP)

\[
\text{max } Z_0(\theta) = \sum_{i \in C} \sum_{q=1}^{Q} \sum_{n=1}^{N} \sum_{r=1}^{R} \theta_{iqnr} w_{iqnr}' - \sum_{i>0} \sum_{q=1}^{Q} (f_{iq} + v_{iq} c_{iq}) y_{iq}
\]

subject to

\[
\sum_{q=1}^{Q} y_{iq} \leq 1 \quad \forall i > 0 \tag{2}
\]

\[
\sum_{i \in C} \sum_{q=1}^{Q} w_{iqnr}' = 1 \quad \forall n, r \tag{3}
\]

\[
w_{iqnr}' \leq y_{iq} \quad \forall i > 0, q, n, r \tag{4}
\]

\[
w_{iqnr}' = 0 \quad \forall i \notin C, q, n, r \tag{5}
\]

\[
\sum_{n=1}^{N} w_{iqnr}' \leq c_{iq} y_{iq} \quad \forall i > 0, q, r \tag{6}
\]
Customer subproblem

obj. fun.	$\sum_{i>0} G_i$ and the relaxed term
availability	operator level and scenario level
disc. utility	variable capturing availability and utility
choice	linearization of the highest utility
price	linearization of the variable η_{iqnr}
capacity	relation with the availability at scenario level
1 Introduction

2 Demand-based benefit maximization problem

3 Decomposition by operator and customers

4 Decomposition by customers and draws

5 Conclusions and future work
Motivation

- Maximization of own utility
- Objective function and capacity constraints
- Behavioral scenario
- Objective function
Uncapacitated case and revenue maximization

<table>
<thead>
<tr>
<th>obj. fun.</th>
<th>$\sum_{i > 0} G_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>availability</td>
<td>no need for discounted utility (no availability)</td>
</tr>
<tr>
<td>utility</td>
<td>linearization of the highest utility</td>
</tr>
<tr>
<td>choice</td>
<td>linearization of the variable η_{iqnr}</td>
</tr>
<tr>
<td>price</td>
<td></td>
</tr>
<tr>
<td>capacity</td>
<td></td>
</tr>
</tbody>
</table>
Lagrangian decomposition

⚠️ Price p_{in} is the same across draws ⇒ no decomposition by n and r

$$p_{in(r-1)} = p_{inr}$$

$$p_{in1} = p_{in2} = \cdots = p_{inR} = p_{in1}$$

Relaxation with Lagrangian multipliers λ_{inr} ⇒ decomposition by n and r
Lagrangian decomposition

⚠️ Price p_{in} is the same across draws $⇒$ no decomposition by n and r

\[p_{in(r-1)} = p_{inr} \]

\[p_{in1} = p_{in2} = \cdots = p_{inR} = p_{in1} \]

Relaxation with Lagrangian multipliers $\lambda_{inr} ⇒$ decomposition by n and r
Lagrangian decomposition

⚠️ Price p_{in} is the same across draws ⇒ no decomposition by n and r

$$p_{in(r-1)} = p_{inr}$$

$$p_{in1} = p_{in2} = \cdots = p_{inR} = p_{in1}$$

Relaxation with Lagrangian multipliers λ_{inr} ⇒ decomposition by n and r
Subproblem for each n and r

\[
\begin{align*}
\text{max} & \quad \sum_{i>0} \left[\frac{1}{R} \eta_{inr} + (\lambda_{inr} - \lambda_{in(r-1)})p_{inr} \right] \\
\text{subject to} & \quad U_{inr} = \beta_{in} p_{inr} + g_{in}^d(x_{in}^d) + \xi_{inr} \quad \forall i \in \mathcal{C}_n \\
& \quad U_{inr} \leq U_{nr} \quad \forall i \\
& \quad U_{nr} \leq U_{inr} + M_{nr}(1 - w_{inr}) \quad \forall i \\
& \quad \sum_{i \in \mathcal{C}} w_{inr} = 1 \\
& \quad a_{in} w_{inr} \leq \eta_{inr} \quad \forall i > 0 \\
& \quad \eta_{inr} \leq b_{in} w_{inr} \quad \forall i > 0 \\
& \quad p_{inr} - (1 - w_{inr}) b_{in} \leq \eta_{inr} \quad \forall i > 0 \\
& \quad \eta_{inr} \leq p_{inr} - (1 - w_{inr}) a_{in} \quad \forall i > 0
\end{align*}
\]
Decomposition by customers and draws

Algorithm

\[i = 0 \]

- solve LP (7)–(11)
- if feasible
- choice prices

\[i = 1 \]

- solve LP (7)–(11)
- if feasible
- choice prices

\[i = |C| \]

- solve LP (7)–(11)
- if feasible
- choice prices
Subgradient method

Initialization
Number iterations K
Initialize $k = 0$
Starting values $\lambda_{inr}^0 = 0$

Subgradients
$s_{inr}^k = p_{in(r-1)}^k - p_{inr}^k$
$s_{inr}^k = 0 \forall i > 0, n, r \Rightarrow $ STOP

Stopping criterion
Increment k
If $k = K$, then STOP, else go to Subgradients

Lagrangian multipliers
Compute step size γ^k
$\lambda_{inr}^{k+1} = \lambda_{inr}^k + \gamma^k s_{inr}^k$
Subgradient method

Initialization
- Number iterations K
- Initialize $k = 0$
- Starting values $\lambda_{inr}^0 = 0$

Subgradients
- $s_{inr}^k = p_{in(r-1)}^k - p_{inr}^k$
- $s_{inr}^k = 0 \forall i > 0, n, r \Rightarrow STOP$

Stopping criterion
- Increment k
- If $k = K$, then STOP,
 else go to Subgradients

Lagrangian multipliers
- Compute step size γ^k
- $\lambda_{inr}^{k+1} = \lambda_{inr}^k + \gamma^k s_{inr}^k$
Subgradient method

Initialization
Number iterations K
Initialize $k = 0$
Starting values $\lambda^0_{inr} = 0$

Subgradients
$s^k_{inr} = p^k_{in(r-1)} - p^k_{inr}$
$s^k_{inr} = 0 \forall i > 0, n, r \Rightarrow STOP$

Lagrangian multipliers
Compute step size γ^k
$\lambda^{k+1}_{inr} = \lambda^k_{inr} + \gamma^k s^k_{inr}$

Stopping criterion
Increment k
If $k = K$, then STOP, else go to Subgradients
Subgradient method

Initialization
Number iterations K
Initialize $k = 0$
Starting values $\lambda^0_{inr} = 0$

Subgradients
$s^k_{inr} = p^{k}_{in(r-1)} - p^k_{inr}$
$s^k_{inr} = 0 \forall i > 0, n, r \Rightarrow \text{STOP}$

Stopping criterion
Increment k
If $k = K$, then STOP, else go to Subgradients

Lagrangian multipliers
Compute step size γ^k
$\lambda^{k+1}_{inr} = \lambda^k_{inr} + \gamma^k s^k_{inr}$
1 Introduction

2 Demand-based benefit maximization problem

3 Decomposition by operator and customers

4 Decomposition by customers and draws

5 Conclusions and future work
Conclusions and future work

- Assess the validity of the LR for the uncapacitated case
- Characterize a LR for the capacitated case
- Implement the LR scheme for the customer subproblem
- Test the complete LR with a large number of N and R
Conclusions and future work

Questions?

meritxell.pacheco@epfl.ch