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Revenue maximization (revenue = expected demand · price)
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Choice-based optimization framework

DCM

Population N (n) and set of alternatives C (i)

Utility associated with alternative i and individual n (Uin):

Uin = Vin︸︷︷︸
systematic

+ εin︸︷︷︸
random

Vin: modeled by the analyst (attributes, socioeconomic information)

e.g., Vin = ASCi + βcostcostin + βtimetimein + βincomeincomen

εin: follows a probability distribution (e.g., Gumbel, normal)

Behavioral assumption: alternative with the highest utility is chosen

Choice probability: Pn(i) = P(Uin ≥ Ujn,∀j ∈ C)

Expected demand: Di =
∑

n Pn(i)
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Choice-based optimization framework

Simulation-based linearization

Simulation to overcome the probabilistic nature of the utility (εin)

R draws (r) from the distribution of εin (ξinr )

Uinr = Vin + ξinr

Uinr are deterministic expressions (can be included in a MILP)

Explanatory variables of Vin:

Exogenous to the optimization problem: xdin (e.g., income)
Endogenous to the optimization problem: xein (e.g., cost)

Integration in MILP: Vin(xdin, x
e
in) linear in xe
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Choice-based optimization framework

Mixed-integer linear formulation

Capacity associated with each alternative: ci

Availability: to propose an alternative (yin) and to keep track of the
occupancy of the alternatives (yinr )

Capacity allocation: controlled with the variables yinr with an
exogenous priority list (Binder et al., 2017)

Discounted utility: unavailable alternative cannot be associated with
the largest Uinr (zinr )

Choice: only one alternative can be chosen for each n and r

winr =

{
1 if zinr = Unr := maxj∈C zjnr
0 otherwise
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Choice-based optimization framework

Expected demand

{winr}r count number of times the behavioral assumption is met

Law of large numbers: 1
R

∑
r winr −−−−→

R→∞
Pn(i |xdin, xein)

Di ≈
1

R

R∑
r=1

N∑
n=1

winr

Original problem (P): demand via choice probabilities

Approximated problems (PR): demand via linear approximation

Sequence of optimal sols. of PR converges to an optimal sol. of P
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Choice-based optimization framework

Profit maximization

Mixed-integer linear formulation can be embedded in any MILP

Illustration: profit maximization problem

Operator proposing services + opt-out option
Price (and capacity) to be decided

obj. fun.

DCM

capacity

price

max profit from all services but the opt-out

availability, discounted utility, choice

fixed or variable (discretized)

pin endogenous (continuous or discrete)
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Choice-based optimization framework

Parking case study

DCM estimated in Ibeas et al. [2014]: non-closed form choice probs.

C: PSP (paid on-street), PUP (underground), FSP (opt-out)

N = 50 (random priority list)

Common price (same price proposed to everyone): pi
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Choice-based optimization framework

Computational complexity

Flexibility of the framework: price segmentation, aggregation of
individuals with similar characteristics, capacity allocation strategies

Revenue maximization problem (without and with fixed capacity)

Without capacity constraints: 1.75h for R = 250 draws
With capacity constraints: 21h for R = 250 draws

Profit maximization problem

Parking facilities might not be open: 9.8h for R = 25 draws
All parking facilities must be open: 11.5h for R = 25 draws

Exploit the decomposable structure of the framework!
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Decomposition techniques: preliminaries
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Decomposition techniques: preliminaries

Motivation

Disaggregate demand

Simulation-based linearization

}
high computational complexity

In practice, large populations and/or considerable number of draws

Framework built on two dimensions that can be addressed separately:

Individuals: most fundamental unit of demand
Draws: independent behavioral scenario
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Decomposition techniques: preliminaries

Revenue maximization problem

obj. fun. (Z)

DCM

price

capacity

max revenue from all services but the opt-out

availability, discounted utility, choice

pin continuous, ηinr = pinwinr

+ linearizing constraints (revenue calculation)

uncapacitated or fixed capacity

pin: different price per individual, groups or same price for everyone

Individual price: disaggregate formulation (iterative procedure)

Common price: aggregate formulation
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Decomposition techniques: preliminaries

Lagrangian relaxation

Uncapacitated revenue maximization problem

Idea: relax utility functions (link between operator and customers)
Introduce duplicates of the choice to come up with independent sets
of variables for each subproblem

ZLR(ρ, ψ) = max
∑

i∈C\{0}

∑
n

∑
r

1

R
ηinr︸ ︷︷ ︸

revenue

+
∑
i∈C

∑
n

∑
r

ρinr (Uinr − dinr − βinpin)︸ ︷︷ ︸
relaxation utility function

+
∑
i∈C

∑
n

∑
r

γinr (vinr − winr )︸ ︷︷ ︸
relaxation duplicate choice
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Decomposition techniques: preliminaries

Limitations of the Lagrangian relaxation

Customer subproblem

DCM-related variables

Decomposition by n and r

Uinr set to the bounds

Operator subproblem

Supply-related variables

Decomposition by n

pin set to the bounds

Trivial solutions:

Iterative methods to approximate the Lagrangian dual (e.g.,
subgradient method)
Derivation of feasible solutions to the original problem Z

Preserve supply-demand interplay: Lagrangian decomposition
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Decomposition techniques: preliminaries

Lagrangian decomposition

Capacitated revenue maximization problem

Idea: duplicate the variables that are not draw-dependent (pin)

Lagrangian decomposition (variable splitting) in combinatorial
optimization
Scenario decomposition in stochastic programming

pin1 = pin2 = · · · = pinR

ZLD(α) = max
∑

i∈C\{0}

∑
n

∑
r

1

R
ηinr︸ ︷︷ ︸

revenue

+
∑

i∈C\{0}

∑
n

∑
r

αinr (pinr − pin(r+1))︸ ︷︷ ︸
relaxation copy constraints
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Decomposition techniques: preliminaries

Limitations of the Lagrangian decomposition

Decomposition by scenario (original problem for each draw)

Individual prices: might be set to the bounds if the service is not
chosen (trivial solutions)

pinr =

{
max{ain, p∗inr}, if αinr − αin(r−1) ≤ 0,
bin, otherwise,

∀i ∈ Cn \ {0} | winr = 0,

pinr

Uinr (pinr )

p∗
inr

Ujnr

Uinr (pinr )
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Lagrangian decomposition scheme

Generalization of the Lagrangian decomposition

Capacitated revenue maximization problem

Motivated by scenario grouping in stochastic programming
Grouping scenarios within each subproblem

Improve the bound
Solving larger subproblems

Key idea

1. S groups of R/S draws each

2. p1in = p2in = · · · = pSin

Relax copy constraints (Lagrangian decomposition)

Relaxed problem splits into S subproblems: ZUB
s (α)

ZUB(α) =
∑

s Z
UB
s (α) upper bound on Z

Best upper bound (Lagrangian dual): subgradient method
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Lagrangian decomposition scheme

Subgradient method

initial values
Lag. mult.

solve
subproblems

step size and
direction

update Lag.
multipliers

until stopping criterion

Initialize Lagrangian multipliers: α0 (e.g., α0 = 0)
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Lagrangian decomposition scheme

Subgradient method

initial values
Lag. mult.

solve
subproblems

step size and
direction

update Lag.
multipliers

until stopping criterion

Upper bound: Solve ZUB
s (α0),∀s (CPLEX solver)

Lower bound: Obtain ZLB by generating feasible solutions for Z

Keep track of the best bounds found so far: ZUB,best and ZLB,best
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Lagrangian decomposition scheme

Feasible solutions

Sequence of prices: {p̄sin}s

Solve Z for all configurations p̄in = p̄sin ∀s and pick the highest

Input: Fixed prices p̄in;
Output: Values for yinr , winr , Uinr , Unr and Z ;
Initialize Z = 0;
for r = 1 . . .R do

Initialize occupancy level oir = 0 and yinr = 1;
for n = 1 . . .N do

for i ∈ Cn \ {0} do
if oir < ci then

Calculate Uinr = βinp̄in + dinr ;

else
Set yinr = 0 and Uinr = `nr ;

Determine winr , Uinr , Unr ;

Update Z = Z +
∑

i∈Cn\{0}
1
Rwinr p̄in and ojr = ojr + 1;
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Lagrangian decomposition scheme

Subgradient method

initial values
Lag. mult.

solve
subproblems

step size and
direction

update Lag.
multipliers

until stopping criterion

Step size: γk = λk ZUB(αk )−ZLB,best

‖vk‖2 (λk step decreasing parameter)
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Lagrangian decomposition scheme

Subgradient method

initial values
Lag. mult.

solve
subproblems

step size and
direction

update Lag.
multipliers

until stopping criterion

Step size: γk = λk ZUB(αk )−ZLB,best

‖vk‖2 (λk step decreasing parameter)

Step direction: vk = −(gk + ζkvk−1)

subgradient: gk
ins = pkins − pkin(s+1)

deflection parameter: ζk
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Lagrangian decomposition scheme

Deflected subgradient method: zigzagging of kind I

Angle between current subgradient and previous one might be obtuse

⇒ next iterate near to the previous one (slows down convergence)

Deflect the step direction to decrease the angle

Only when gk forms an obtuse angle with the previous direction
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Lagrangian decomposition scheme

Subgradient method

initial values
Lag. mult.

solve
subproblems

step size and
direction

update Lag.
multipliers

until stopping criterion

Update Lagrangian multipliers: αk+1 = αk + γkvk
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Lagrangian decomposition scheme

Subgradient method

initial values
Lag. mult.

solve
subproblems

step size and
direction

update Lag.
multipliers

until stopping criterion

Update Lagrangian multipliers: αk+1 = αk + γkvk

Stopping criterion: computational time
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Numerical experiments

Outline

1 Introduction

2 Choice-based optimization framework

3 Decomposition techniques: preliminaries

4 Lagrangian decomposition scheme

5 Numerical experiments

6 Conclusions and future work

M. Pacheco, TRANSP-OR, EPFL Lagrangian decomposition scheme June 26th, 2020 27/36



Numerical experiments

Case study

Parking choices

Common price: pi (aggregate formulation)
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Numerical experiments

Comparison with optimal solutions

N = 50, 5 draws per group and R ∈ {100, 250, 500}

Run the LD scheme for 10% of the exact computational time

gapopt = Z−ZLB,best

Z , gapdual = ZUB,best−ZLB,best

ZLB,best

R #Iter. ZUB,best (it.) ZLB,best (it.) Avg. time it. (min) gapdual(%) gapopt(%)

100 5 26.70 (5) 26.18 (2) 5.16 1.98 0.11
250 14 26.46 (14) 26.02 (1) 16.81 1.70 0.09
500 21 26.40 (21) 25.99 (7) 35.82 1.58 0.02
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Numerical experiments

Evolution of bounds
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Numerical experiments

Large number of draws

N = 50, 2 draws per group, R ∈ {100, 250, 500, 1000, 2500, 5000}

Time [min] as stopping criterion: T ∈ {30, 75, 150, 300, 750, 1500}
Average iteration time: 57 min (R = 2500) and 145 min (R = 5000)
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Numerical experiments

Large populations

R = 500, 2 draws per group, N ∈ {50, 100, 150, 197}

Time [min] as stopping criterion: T ∈ {150, 300, 450, 600}
Average iteration time: 8 min (N = 50) and 95 min (N = 100)
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Numerical experiments

Trade-off with respect to the size of the draw groups

N = 50, R = 500, #draws per group ∈ {1, 2, 3, 4, 5, 10}

Same computational time limit T = 150 min

Less iterations as the number of draws per group increases
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Conclusions and future work
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Conclusions and future work

Conclusions

Supply-demand interplay should not be dualized

Heuristic approach based on Lagrangian decomposition for the
revenue maximization problem

Speed up the solution approach with the generation of good feasible
solutions (duality gaps < 4% in all instances)

As long as the subproblems are computationally manageable, large
number of draws per group is recommended
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Conclusions and future work

Future research directions

Parallelization routines (to solve the subproblems, to generate feasible
solutions)

Generalization of the approach with additional endogenous variables

Combination with other techniques (e.g., Benders decomposition in
the presence of discrete design variables) and variance reduction
methods (to decrease the number of draws)
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Conclusions and future work

Questions?
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