Recent methodological developments in discrete choice models

Michel Bierlaire

Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne
Outline

- Introduction
- MEV models
- Mixtures of MEV
- Testing
- Route choice (no time...)
Introduction

- Discrete choice models:
 \[P(i|C_n) \text{ where } C_n = \{1, \ldots, J\} \]

- Random utility models:
 \[U_{in} = V_{in} + \epsilon_{in} \]
 \[P(i|C_n) = P(U_{in} \geq U_{jn}, j = 1, \ldots, J) \]

- Utility is a latent concept
Multinomial Logit Model

- **Assumption:** \(\varepsilon_{in} \) are i.i.d. Extreme Value distributed.
- Independence is both across \(i \) and \(n \)
- Choice model:

\[
P(i|C_n) = \frac{e^{V_{in}}}{\sum_{j \in C_n} e^{V_{jn}}}
\]
Relaxing the independence assumption

...across alternatives

\[
\begin{pmatrix}
U_{1n} \\
\vdots \\
U_{Jn}
\end{pmatrix} =
\begin{pmatrix}
V_{1n} \\
\vdots \\
V_{Jn}
\end{pmatrix} +
\begin{pmatrix}
\varepsilon_{1n} \\
\vdots \\
\varepsilon_{Jn}
\end{pmatrix}
\]

that is

\[U_n = V_n + \varepsilon_n\]

and \(\varepsilon_n\) is a vector of random variables.
Relaxing the independence assumption

- $\varepsilon_n \sim N(0, \Sigma)$: multinomial probit model
 - No closed form for the multifold integral
 - Numerical integration is computationally infeasible

- Extensions of multinomial logit model
 - Nested logit model
 - Multivariate Extreme Value (MEV) models
MEV models

Family of models proposed by McFadden (1978)

Idea: a model is generated by a function

\[G : \mathbb{R}^J \rightarrow \mathbb{R} \]

From \(G \), we can build

- The cumulative distribution function (CDF) of \(\varepsilon_n \)
- The probability model
- The expected maximum utility

Called Generalized EV models in DCM community
MEV models

1. G is homogeneous of degree $\mu > 0$, that is

$$G(\alpha x) = \alpha^\mu G(x)$$

2. \(\lim_{x_i \to +\infty} G(x_1, \ldots, x_i, \ldots, x_J) = +\infty, \forall i,\)

3. the kth partial derivative with respect to k distincts x_i is non negative if k is odd and non positive if k is even, i.e., for all (distincts) indices $i_1, \ldots, i_k \in \{1, \ldots, J\}$, we have

$$(-1)^k \frac{\partial^k G}{\partial x_{i_1} \ldots \partial x_{i_k}}(x) \leq 0, \forall x \in \mathbb{R}_+^J.$$
MEV models

- Density function:
 \[F(\varepsilon_1, \ldots, \varepsilon_J) = e^{-G(e^{-\varepsilon_1}, \ldots, e^{-\varepsilon_J})} \]

- Probability:
 \[P(i|C) = \frac{e^{V_i + \ln G_i(e^{V_1}, \ldots, e^{V_J})}}{\sum_{j \in C} e^{V_j + \ln G_j(e^{V_1}, \ldots, e^{V_J})}} \]
 \[G_i = \frac{\partial G}{\partial x_i}. \] This is a closed form

- Expected maximum utility:
 \[V_C = \frac{\ln G(\ldots) + \gamma}{\mu} \]
 where \(\gamma \) is Euler’s constant.

- Note:
 \[P(i|C) = \frac{\partial V_C}{\partial V_i}. \]
MEV models

Example: Multinomial logit:

\[G(e^{V_1}, \ldots, e^{V_J}) = \sum_{i=1}^{J} e^{\mu V_i} \]
MEV models

Example: Nested logit

\[G(y) = \sum_{m=1}^{M} \left(\sum_{i=1}^{J_m} y_i^{\mu_m} \right)^{\frac{\mu}{\mu_m}} \]

Example: Cross-Nested Logit

\[G(y_1, \ldots, y_J) = \sum_{m=1}^{M} \left(\sum_{j \in C} (\alpha_{jm}^{1/\mu} y_j)^{\mu_m} \right)^{\frac{\mu}{\mu_m}} \]
Nested Logit Model
Nested Logit Model

- Motorized
 - Bus
 - Train
- Unmotorized
 - Car
 - Ped.
 - Bike
Cross-Nested Logit Model

Nest 1

Bus
Train

Nest 2

Car
Ped.
Bike
MEV models

Advantages:

- Closed form probability model
- Provides a great deal of flexibility
MEV models

Issues:

- Formulation not in term of correlations
 Abbe, Bierlaire & Toledo (2005)

- Require heavy proofs
 Daly & Bierlaire (2006)

- Homoscedasticity
 - McFadden & Train (2000)

- Sampling issues
 - Bierlaire, Bolduc & McFadden (2006)
Mixture of MEV

In statistics, a **mixture density** is a pdf which is a convex linear combinations of other pdf’s. If \(f(\varepsilon, \theta) \) is a pdf, and if \(w(\theta) \) is a nonnegative function such that \(\int_a w(a) da = 1 \) then

\[
g(\varepsilon) = \int_a w(a) f(\varepsilon, \theta) da
\]

is also a pdf. We say that \(g \) is a mixture of \(f \).

If \(f \) is the pdf of a MEV model, it is a **mixture of MEV**.
Mixture of MEV

Discrete mixtures are also possible. If \(f(\varepsilon, \theta) \) is a pdf, and if \(w_i, i = 1, \ldots, n \) are nonnegative weights such that \(\sum_{i=1}^{n} w_i = 1 \) then

\[
g(\varepsilon) = \sum_{i=1}^{n} w_i f(\varepsilon, \theta_i)
\]

is also a pdf. We say that \(g \) is a discrete mixture of \(f \).
Mixture of MEV

Common terminology:
- Mixed logit: incorrect
- Logit kernel: correct
- Hybrid model: inaccurate

Most appropriate terminology:
- mixture of logit models
- mixture of MEV models

If $w(a)$ is a normal pdf, we have
- normal mixture of MEV models
Mixture of MEV

\[U_n = V_n + \varepsilon_n \]

- \(\varepsilon_n \) compliant with MEV theory
- \(V_n \) contains random parameters.

\[V_n = \beta^T X_n \text{ where } \beta \sim N(\hat{\beta}, \Sigma) \]

- Using the Cholesky factorization, we have

\[\beta = \hat{\beta} + P\zeta \text{ where } \Sigma = PP^T \]

and \(\zeta \) are i.i.d. standard normal variates.
Heteroscedastic model

- Random parameter = alternative specific constant
- Error term becomes:
 \[\varepsilon_{in} = \xi_{in} + \nu_{in} \]
- \(\xi_{in} \sim N(c_i, \sigma_i^2) \)
- \(\mu_{in} \sim \text{MEV} \)
Panel data

• Same individual observed several times
• Utility:
\[U_{int} = V_{int} + \xi_{in} + \nu_{int} \]
• Probability
\[P_n(i|C_n) = \prod_t P_{nt}(i|C_{nt}) \]

where \(C_n = \bigcup_{t \in T_n} C_{nt} \)

• \(\xi_{in} \) is not distributed across observations, only across individuals
Mixture of MEV

- McFadden & Train (2000)
 "Under mild regularity conditions, any discrete choice model derived from random utility maximization has choice probabilities that can be approximated as closely as one pleases by a Mixed MNL model."

- Why bother with Mixture of MEV?
Mixture of MEV

- MEV has closed form formulation
- Mixture models require simulated maximum likelihood estimation
- Capture as much as possible of the correlation using MEV
- Use the mixing distribution for the rest
- **Issue:** estimation
Motivations

- MEV family must be explored
- Complicated implementation
- No appropriate software package
- Most researchers use commercial packages: LIMDEP, ALOGIT, HieLoW or Gauss, Matlab, SAS
- Freeware: Kenneth Train (but based on Gauss)
Objectives

- Maximum likelihood estimation of a wide variety of MEV models
- Use various nonlinear optimization algorithms
- Open source
- Designed for researchers
- Flexible and easily extensible
BIOGEME

Blerlaire’s Optimization toolbox for GEV Models Estimation

biogeme.epfl.ch
Testing

- Mixtures of MEV is very flexible (too flexible?)
- Choice of the distribution for the random parameter is important
- Need for a test to check if it is appropriate
Testing: main ideas

- Random parameter: ω
- Base (postulated) distribution: f, F
- True distribution: g, G
- Unknown transformation Q, monotonic, such that
 \[G(\omega) = Q(F(\omega)), \]
- Densities:
 \[g(\omega) = q(F(\omega))f(\omega). \]
Testing: main ideas

• Approximate q using polynomials.

\[q_N(x) = 1 + \sum_{k=1}^{N} \delta_k L_k(x), \]

• L_k are transformed Legendre polynomials

• Define

\[q(x) \approx \frac{1}{K} q_N^2(x), \]

where \(K = \int_{-\infty}^{+\infty} q_N^2(F(\omega)) f(\omega) d\omega \)
Testing: main ideas

\[\ln(f) \sim N(-2.52, 1.43^2) \]

\[g_1 \]
\[g_2 \]
\[g_3 \]
Testing: main ideas

- Under the null hypothesis that $f = g$,

$$
P_n(i|C_n) = \int_{-\infty}^{+\infty} P_n(i|\beta, C_n) g(\beta) d\beta,
$$

is equivalent to the model

$$
P_n(i|C_n) = \int_{-\infty}^{+\infty} P_n(i|\beta, C_n) f(\beta) d\beta.
$$
Testing: main ideas

- The two models are nested
- Likelihood ratio test can be used to test if the models are indeed equivalent
- Test implemented in Biogeme
Short course

Lausanne, March 25-29, 2007

Ben-Akiva, McFadden, Bierlaire, Bolduc

http://transp-or.epfl.ch/dca