

Stochastic adaptive resampling for the estimation of discrete choice models

23rd Swiss Transport Research Conference 10–12 May 2023

Nicola Ortelli^{1,2}, Matthieu de Lapparent¹, Michel Bierlaire²

¹ IIDE, HEIG-VD ² TRANSP-OR, EPFL Introduction

Flashback

HE Institut Institut Interdisciplinari de Ventreprise	re ent	EPFL			
Faster estimation of discrete choice models via dataset reduction					
22 nd Swiss Transport Research Conference 18–20 May 2022					
Nicola Ortelli ^{1,2} , Matthieu de Lapparent ¹ , Michel Bierlaire ²					
¹ IIDE, HEIG-VD ² TRANSP-OR, EPFL					
N. Ortelli, M. de Lapparent, M. Bierlaire	Faster estimation of DCMs via dataset reduction	22rd STRC, 18-20 May 2022	1 / 26		

Stochastic adaptive resampling for DCMs

	Background				
Discrete choice models (DCMs)					
What are DCMs?					
 Suppose N observations, each containing: a vector of explanatory variables x_n; the observed choice i_n. 					
 A DCM calculates the c 	hoice probabilities as a fund	ction of x_n and θ :	- 1		
	$P(i \mid x_n; \theta),$				
• where θ is a vector of model parameters.					
N. Ortelli, M. de Lapparent, M. Bierlaire	aster estimation of DCMs via dataset reduction	22 nd STRC, 18-20 May 2022	4 / 26		

Background

Estimating DCMs

Maximum likelihood estimation (MLE)

• Find θ so as to maximize the joint probability of the observed choices:

$$\max_{\theta} \mathcal{L}(\theta) = \max_{\theta} \sum_{n=1}^{N} \log P(i_n | x_n; \theta).$$

- Solved using iterative methods-Newton, BFGS, etc.
- Each iteration is $\mathcal{O}(N)$.
- MLE is burdensome for large datasets!

N. Ortelli, M. de Lapparent, M. Bierlaire

Background Intuition Factoring out redundancy If the data contains groups of identical observations: $\mathcal{L}(\theta) = \sum_{u=1}^{U} N_u \cdot \log P(i_u | x_u; \theta),$ U unique observations. • Each appears N_{μ} times in the original data. • Can we extend this "factorization trick" to nearly identical observations? N. Ortelli, M. de Lapparent, M. Bierlaire Faster estimation of DCMs via dataset reduction 22nd STRC, 18-20 May 2022 6/26

N. Ortelli, M. de Lapparent, M. Bierlaire

Faster estimation of DCMs via dataset reduction

8/26

22nd STRC, 18-20 May 2022

Introduction

Resampling estimation of DCMs [Ortelli et al., 2023]

N. Ortelli, M. de Lapparent, M. Bierlaire

Spin-off

LSH-DR

- Substantial time savings when rough estimates are sufficient.
- What can we do when the full-dataset estimates are needed?

Spin-off

LSH-DR

- Substantial time savings when rough estimates are sufficient.
- What can we do when the full-dataset estimates are needed?

Stochastic adaptive resampling (STAR)

- Embed LSH-DR within the model estimation process.
- Generate batches for stochastic optimization. [Lederrey et al., 2021]
- Start small and increase batch size dynamically.

Introduction

Illustrative example

Generic algorithm

- Input:
 - N: full dataset;
 - θ₀: initial solution;
- Initialization:
 - k ← 0;
- Repeat:

1
$$\theta_{k+1} \leftarrow \texttt{newCandidate}(\theta_k, \mathcal{N});$$

$$2 \ k \leftarrow k+1;$$

• Until
$$||\nabla_{rel} \mathcal{L}(\theta_k)|| < \varepsilon$$
.

Generic algorithm

- Input:
 - N: full dataset;
 - θ₀: initial solution;
- Initialization:
 - *k* ← 0;
- Repeat:

1
$$\theta_{k+1} \leftarrow \texttt{newCandidate}(\theta_k, \mathcal{N});$$

$$2 \ k \leftarrow k+1;$$

• Until
$$||\nabla_{rel} \mathcal{L}(\theta_k)|| < \varepsilon$$
.

$$[
abla_{ ext{rel}} \mathcal{L}(heta)]_j = rac{[
abla \mathcal{L}(heta)]_j \cdot heta_j}{\mathcal{L}(heta)}$$

Generic algorithm + **STAR**

- Input:
 - N: full dataset;
 - θ₀: initial solution;
 - w₀: initial bucket width.
- Initialization:
 - k ← 0;
- Repeat:

1
$$\theta_{k+1} \leftarrow \texttt{newCandidate}(\theta_k, \mathcal{N});$$

$$2 \ k \leftarrow k+1;$$

• Until
$$||\nabla_{rel} \mathcal{L}(\theta_k)|| < \varepsilon$$
.

$$[
abla_{ ext{rel}} \mathcal{L}(heta)]_j = rac{[
abla \mathcal{L}(heta)]_j \cdot heta_j}{\mathcal{L}(heta)}$$

Generic algorithm + **STAR**

- Input:
 - N: full dataset;
 - θ₀: initial solution;
 - w₀: initial bucket width.
- Initialization:
 - *k* ← 0;
- Repeat:
 - 1 $\mathcal{N}_k^* \leftarrow \text{LSH-DR}(w_k, \mathcal{N});$ 2 $\theta_{k+1} \leftarrow \text{newCandidate}(\theta_k, \mathcal{N}_k^*);$

• Until
$$||\nabla_{rel} \mathcal{L}(\theta_k)|| < \varepsilon$$
.

$$[
abla_{ ext{rel}} \mathcal{L}(heta)]_j = rac{[
abla \mathcal{L}(heta)]_j \cdot heta_j}{\mathcal{L}(heta)}$$

Generic algorithm + **STAR**

- Input:
 - N: full dataset;
 - θ₀: initial solution;
 - w₀: initial bucket width.
- Initialization:
 - k ← 0;
- Repeat:

• Until
$$||\nabla_{rel} \mathcal{L}(\theta_k)|| < \varepsilon$$
.

$$[
abla_{ ext{rel}} \mathcal{L}(heta)]_j = rac{[
abla \mathcal{L}(heta)]_j \cdot heta_j}{\mathcal{L}(heta)}$$

Generic algorithm + **STAR**

- Input:
 - N: full dataset;
 - θ₀: initial solution;
 - w₀: initial bucket width.
- Initialization:
 - *k* ← 0;
- Repeat:

 $\begin{array}{l} \bullet \ \mathcal{N}_k^* \leftarrow \text{LSH-DR}(w_k, \mathcal{N}); \\ \bullet \ \theta_{k+1} \leftarrow \text{newCandidate}(\theta_k, \mathcal{N}_k^*); \\ \bullet \ w_{k+1} \leftarrow \text{updateW}(w_k, \theta_k, \theta_{k+1}); \\ \bullet \ k \leftarrow k+1; \end{array}$

• Until $||\nabla_{rel} \mathcal{L}(\theta_k)|| < \varepsilon$.

Relative gradient

$$[
abla_{ ext{rel}} \mathcal{L}(heta)]_j = rac{[
abla \mathcal{L}(heta)]_j \cdot heta_j}{\mathcal{L}(heta)}$$

Bucket width update

$$w_{k+1} = w_k \cdot \min\left(1, \frac{||\nabla_{\text{rel}} \mathcal{L}(\theta_{k+1})||}{||\nabla_{\text{rel}} \mathcal{L}(\theta_k)||}\right)$$

• Until $||\nabla_{rel} \mathcal{L}(\theta_k)|| < \varepsilon$.

Dataset & models

LPMC data [Hillel et al., 2018]

- Mode choice, 4 alternatives: walk, cycle, drive, public transport.
- 81'086 observations.

Models [Hillel, 2019]

Execution time

Estimation time

Execution time — STAR vs. stochastic

Conclusion

Summary

- Embed LSH-DR within the model estimation process.
- Significant time savings without compromising the quality of results.

Next steps

- Bucket width update.
- Advanced DCMs.

References

LSH-DR

- Ortelli, N., de Lapparent, M. and Bierlaire, M. (2023). Resampling estimation of discrete choice models, Technical Report, TRANSP-OR 230330. Transport and Mobility Laboratory, ENAC, EPFL.
- Ortelli, N., de Lapparent, M. and Bierlaire, M. (2022). Faster estimation of discrete choice models via dataset reduction, Proceedings of the 23rd Swiss Transportation Research Conference.

Direct precedent

• Lederrey, G., Lurkin, V., Hillel, T. and Bierlaire, M. (2021). Estimation of discrete choice models with hybrid stochastic adaptive batch size algorithms, Journal of choice modelling 38.

Dataset & models

- Hillel, T., Elshafie, M. Z. and Jin, Y. (2018). Recreating passenger mode choice-sets for transport simulation: A case study of London, UK, Proceedings of the Institution of Civil Engineers-Smart Infrastructure and Construction 171(1).
- Hillel, T. (2019). Understanding travel mode choice: A new approach for city scale simulation, PhD thesis, University of Cambridge.

Stochastic adaptive resampling for the estimation of discrete choice models

23rd Swiss Transport Research Conference 10–12 May 2023

Nicola Ortelli^{1,2}, Matthieu de Lapparent¹, Michel Bierlaire²

¹ IIDE, HEIG-VD ² TRANSP-OR, EPFL

Sampling time per iteration

Number of epochs

Number of iterations

Model	Executio	Ratio	
	Newton-TR*	Newton-TR	
MNL-S	$1.5\pm$ 0.2	$0.8\pm\ 0.1$	1.89
MNL-M	48.2 ± 6.8	73.6 ± 2.8	0.65
MNL-L	811.9 ± 141.6	$1'003.8\pm10.9$	0.81