Marshaling and shunting yards

- Bundling different commodities with close origins and destinations
Problem setting

- Existing SBB Cargo network
 - 2 inner marshaling yards
 - 3 border marshaling yards
 - Approx. 70 shunting yards – 50 can be changed
- Determine optimal number and locations of the yards
Related problems

- Hub location problem (HLP)
 - Missing track capacities and hub operation costs
- Multicommodity flow problem (MFP)
 - Missing hub capacities and operation costs
- Multicommodity network design problem (MNDP)
 - Missing hub types and operation costs
Problem definition

• Extension of the HLP

• Network elements:
 • \(N \) – Set of stations, including potential marshaling and shunting yards
 • \(A \) – Set of direct links between the stations
 • \(K \) – Set of transported commodities each described with the origin, destination, weight and number of wagons
Problem definition (cont.)

• Constants:
 • d_{ij} – Shortest distance between nodes i and j
 • k_o – Origin of commodity k
 • k_d – Destination of commodity k
 • w^k – Weight of commodity k
 • P_W – Cost of transporting a weight unit of any commodity per distance unit
 • P_D – Cost of the locomotive and driver per distance unit
 • v^k – Number of wagons of commodity k
 • V_{max} – Maximum number of wagons in a train
 • S – Cost of shunting one wagon in a shunting yard
 • M – Cost of shunting one wagon in a marshaling yard
Problem definition (cont.)

- Transportation cost per distance unit:

 - Unbundled commodity:

 \[c^k = w^k P_W + P_D \quad \forall k \in K \]

 - Bundled commodity:

 \[c_r^k = w^k P_W + \frac{V^k}{V_{max}} P_D \quad \forall k \in K \]
Problem definition (cont.)

- **Objective function:**
 \[
 \min \sum_{k \in K} \left(\sum_{i \in N} \sum_{j \in N} X_{ij}^k \left((d_{ik} + d_{jk})c^k + d_{ij}c_r^k + (s_i S + m_i M + s_j S + m_j M)v^k \right) + (1 - z^k) \right) d_{ko}d_{kd}c^k
 \]

- **Variables:**
 - \(X_{ij}^k\) – Determines if commodity \(k\) is transported via hubs \(i\) and \(j\)
 - \(s_i\) – Determines if the node \(i\) is a shunting yard
 - \(m_i\) – Determines if the node \(i\) is a marshaling yard
 - \(z^k\) – Determines if the commodity \(k\) is transported bundled
Problem definition (cont.)

- Node type constraints:

 \[r_i + s_i + m_i = 1, \quad \forall i \in N \]

- Commodity shunting constraints:

 \[\sum_{i \in N} \sum_{j \in N} X_{ij}^k = z^k, \quad \forall k \in K \]

 \[2X_{ij}^k \leq s_i + m_i + s_j + m_j, \quad \forall k \in K, \forall i \in N, \forall j \in N \]
• Node capacity constraints:

\[
\sum_{k \in K} \sum_{j \in N} X_{ij}^k v^k + \sum_{k \in K} \sum_{j \in N} X_{ji}^k v^k = a_i, \quad \forall i \in N
\]

\[
a_i \leq r_i M + s_i C_S + m_i C_M, \quad \forall i \in N
\]

Variables:
• \(a_i \) – Required capacity of the node \(i \)

Constants:
• \(M \) – Sufficiently large number
• \(C_S \) – Maximum capacity of a shunting yard
• \(C_M \) – Maximum capacity of a marshaling yard
Problem definition (cont.)

• Arc capacity constraints:

\[
\sum_{k \in K} v^k \left(\sum_{i \in N} \sum_{j \in N} x_{ij}^k \left(b_{lm}^{k,i} + b_{lm}^{k,j} + b_{lm}^{ij} \right) + (1 - z^k)b_{lm}^{k,0,k_d} \right) \leq u_{lm}, \forall (l, m) \in A
\]

Constants:

• \(u_{lm} \) – Capacity of the arc (l, m)

• \(b_{lm}^{ij} \) – Determines if arc (l, m) belongs to the shortest path between i and j
Problem definition (cont.)

- Maximum number of yards:
 \[
 \sum_{i \in N} s_i \leq L_S \quad \sum_{i \in N} m_i \leq L_M
 \]

- Integrality constraints:
 \[
 X_{ij}^k \in \{0,1\}, \quad \forall k \in K, \forall i \in N, \forall j \in N
 \]
 \[
 z^k \in \{0,1\}, \quad \forall k \in K
 \]
 \[
 r_i \in \{0,1\}, \quad \forall i \in N
 \]
 \[
 s_i \in \{0,1\}, \quad \forall i \in N
 \]
 \[
 m_i \in \{0,1\}, \quad \forall i \in N
 \]
Problem size

- Size of the SBB Cargo network:
 - Approx. 2100 stations
 - Approx. 2500 direct links
 - Over 65000 commodities
Heuristic algorithm

- Hub location:
 - Adaptive large neighborhood search
 - Variable neighborhood search
Heuristic algorithm - Neighborhoods

- Select the busiest station close to the MY and exchange their locations

- Select the least used MY and convert it into SY

- Select SY with fully utilized, maximum capacity and convert it into MY
Heuristic algorithm - Neighborhoods

- Select SY with most unused capacity and decrease it

- Select SY with fully utilized, below-maximum capacity and increase it
Select underused SY with minimum capacity and convert it into a regular station.

Select frequently used regular station and convert it into a SY with minimum capacity.
Heuristic algorithm

- Commodity routing:
 - Prioritized assignment algorithm

 Select commodity by priority

 Path alternatives
 1. Shortest path
 2. Via marshaling yards
 3. Via shunting yards

 Path selection
 Cheapest, available path
Heuristic algorithm - Path alternatives

• Direct (shortest) path
 • Unbundled commodity

• Via marshaling yards
 • Bundled commodity
Heuristic algorithm - Path alternatives

- Via shunting yards
 - Bundled commodity

- Via one marshaling and one shunting yard
 - Bundled commodity
Heuristic algorithm – development details

- Developed algorithm is very flexible:
 - Easily extendable with additional neighborhood operators, i.e. network transformations
 - Easy definition of specific initial network states, e.g. all marshaling yards closed, several additional marshaling yards open, etc.
Preliminary results

- Network states with potential transportation cost reduction identified with two strategies (thus far):
 1. S1: Allowing opening of new marshaling yards
 2. S2: Disallowing opening of new marshaling yards
Preliminary results (cont.)

- Best resulting networks:

<table>
<thead>
<tr>
<th>Strat.</th>
<th>New MY</th>
<th>Rem. MY</th>
<th>Mov. MY</th>
<th>Total MY</th>
<th>New SY</th>
<th>Rem. SY</th>
<th>Total SY</th>
<th>Cost reduct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orig. net.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>S1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>46</td>
<td>8.505%</td>
</tr>
<tr>
<td>S2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>19</td>
<td>5</td>
<td>64</td>
<td>1.857%</td>
</tr>
</tbody>
</table>

- Daily transportation cost in the original network: over 38 Million CHF
- Running time: approx. 9h
Results discussion

- Costs of transportation are dominant over yard operation costs
- Cost of yard maintenance is not taken into account
 - This cost contributes to reducing the number of yards and their size
 - Opening new yards will be less favored by the algorithm
 - Could be included in another case study
- New yards can be near the existing ones
 - E.g. in S1, new MY Territet is opened close to Lausanne MY
 - The objective function should penalize this situation
Conclusions

• Developed algorithm explores various network changes, their combinations and their influence to the transportation costs
 • Flexible, easily extendable algorithm
• The algorithm identified network changes resulting in transportation cost reduction
• The objective function should be extended with the real costs of maintenance of the marshaling and shunting yards
 • Relevant change in the algorithm result
Future work

• Include penalty for having two yards near each other

• Solve the problem exactly on the subset of input data
 • To benchmark the heuristic result

• Implement visualization of the results

• Develop models based on MFP and MNDP
 • To compare results
 • If the current formulation cannot be solved exactly
Thank you!

Questions?

nikola.obrenovic@epfl.ch
References

