Railway Disruption Management with Viriato and Algorithm Platform

Oliver Buschor, Meritxell Pacheco, Stefano Bortolomiol, Michel Bierlaire Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

> Nikola Obrenović Faculty of Technical Sciences, University of Novi Sad, Serbia

> > Matthias Hellwig SMA und Partner AG, Zürich, Switzerland

> > nextRail 19, Zürich, Switzerland

Outline

- I. Introduction
- 2. State of the art
- 3. Data preparation
- 4. Algorithm implementation
- 5. Conclusions and future work

Introduction

EPFL 🕉

- Disrupted train network
 - rearrange timetable
 - reroute trains
 - respect capacity
 - keep cost moderate
 - satisfy passenger comfort

ANSP-OR

• flexible route choice

• Recovery problem in 3 phases (Binder et al. (2017b), Veelenturf et

al. (2015), Cacchiani et al. (2014)) :

Timetable rescheduling problem

- Overview and Classification (Cacchiani et al., 2014)
 - Perturbation

Disturbance

Microscopic

• Network

• Approach

NSP-OR

EPFI

Disruption

Macroscopic

Passenger centric

Timetable rescheduling problem

Modelling approaches

Network Graph	 Space - time: Kroon et al. (2015), Binder et al. (2017a,b), Hao et al. (2018) Event - activity: Zhu and Goverde (2019), Veelenturf et al. (2015)
Passenger Groups	 Dividable: Kroon et al. (2015), Hao et al. (2018) Not dividable: Corman et al. (2016), Binder et al. (2017a, b), Zhu and Goverde (2019)

Recovery decisions

	Kroon et al. (2015)	Corman et al. (2016)	Veelenturf et al. (2015)	Hao et al. (2018)	Binder et al. (2017a, b)	Zhu and Goverde (2019)
Modify Rolling Stock	Х					
Delay		Х	Х	Х	Х	Х
Order		Х	Х	Х	Х	Х
Reroute			Х	Х	Х	Х
Cancel			Х		Х	Х
Emergency Trains					Х	
Additional stops				Х	Х	Х
Skip stops / short turns						Х

Viriato and Algorithm Platform

Datasets

- Passenger trips ARE (2010)
 - CH split into zones
 - Demand of trips between zones
 - Travel time and distance
- Viriato SMA und Partner AG
 - Part of SBB railway network (stations, junctions, tracks, capacity)
 - Train schedule and paths

Data preparation

Assignment of stations to zones

- Demand of a zone is considered, if the distance to closest station is below a threshold
- Each zone is connected to several stations:
 - *n* closest stations by Euclidean distance
 - All stations in the k closest zones by travel time
 - Weighted connections with travel time by public transportation
 - *n* & *k* thresholds to be set

optimising railways

Adapted Dijkstra's shortest path algorithm

- Do not put the zones into the queue
- Add $\frac{1}{2}$ of headway of Ist leg train to mimic waiting time

at the first station

Resulting path loads

0 - D	NPVM	Simulated	Δ
ZHDB - ZOER	46'575	58'059	+11'484
ZOER - ZHDB	47'810	46'221	- 1'589
ZSEB - ZOER	6'124	815	- 5'309
ZOER - ZSEB	6'050	940	- 5'119
ZWIP - ZOER	52'867	15'895	- 36'972
ZOER - ZWIP	51'689	5'542	- 46'147

EPFL STRANSP-OR

Problem definition by Binder et al.

- Multi-objective railway timetable rescheduling problem as an Integer Linear Program:
 - f_p : minimization of passenger inconvenience,
 - f_o : minimization of operational costs, and
 - f_d : minimization of the deviation from the undisrupted timetable.

- Discretized planning horizon (I minute period)
- Macroscopic model of railway network
 - Stations with or without a shunting yard
 - Tracks considered to be bidirectional
- Original and emergency trains
 - The latter deployed only from the shunting yards

Time-expanded network

Recovery decisions

- Cancellation: A train may be fully or partially canceled
- Delay: The arrival or departure may be delayed up to a maximal amount of time
- Rerouting: A train may be rerouted through another path than the originally planned one
- Emergency train: At every station with a shunting yard, a limited number of emergency trains is available
- Emergency bus: If the track between two neighboring stations is disrupted, an emergency bus may be scheduled to connect the two

stations directly

- Passenger: (o_p, d_p, t_p)
- Travel options: $\Omega(o_p, d_p)$
- Generalized path cost for passenger p and path $\omega \in \Omega(op, d_p)$:

$$C^{p}_{\omega} = VT^{p}_{\omega} + \beta_{1} \cdot WT^{p}_{\omega} + \beta_{2} \cdot NT^{p}_{\omega} + \beta_{3} \cdot ED^{p}_{\omega} + \beta_{4} \cdot LD^{p}_{\omega}$$

- In real cases, the problem is too big to be solved exactly
- Heuristic approach: generate a set of "good" disposition timetables, and quantify the trade-off between the objectives

Solution methodology

- Adaptive Large Neighborhood Search (ALNS) meta-heuristic is implemented to construct the disposition timetable
- Neighborhood operators are inspired from real-life recovery strategies
- Each operator is chosen with a certain probability
 - Probabilities are updated during the execution
- The algorithm keeps track of non-dominated solutions using an archive of solutions

Neighborhood operators

- Cancel trains completely
- Cancel trains after a given station
- Delay trains completely
- Delay trains after a given station
- Reroute trains between neighboring stations
- Add an emergency train
- Add an emergency bus

Results

• The three-dimensional Pareto frontier allows to analyze the

Implementation with Viriato and Algorithm Platform

- Data:
 - Network data
 - Timetables
- Used REST API methods:
 - Data access methods
 - neighbor-nodes nodes connected with a direct track
 - section-tracks-between finding a sequence of tracks which link two nodes
 - section-tracks-parallel-to finding a parallel section for a given input
 - set-section-track defining the section tracts for a train path
 - reroute-train set the new path and the used section tracks
 - Scenario definition methods

Conclusions

- From the previous research:
 - Proposed methodology gives satisfactory results and allows analysis of the trade-offs between the different objectives
 - Significant improvements can be achieved in passenger satisfaction with only a minor increase in the operational cost of the timetable
 - The higher the deviation from the undisrupted timetable is allowed, the better the timetable will perform in terms of passenger satisfaction and operational cost

- Viriato provides access to valuable data
- By using the Viriato environment and off-the-shelf methods of Algorithm Platform, **algorithm development is faster**
 - Expert can focus on the scientific work
- Faster industrial application of theoretical developments
- Viriato could be improved by including demand models

- H2020 project (or similar program) application:
 - Intelligent algorithms for real-time railway management

Thank you!

Questions? nikola.obrenovic@uns.ac.rs

nextRail19

References

- Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., and Wage- naar, J. (2014). An overview of recovery models and algorithms for real-time railway rescheduling. Transportation Research Part B: Methodological, 63:15–37.
- Hao, W., Meng, L., Veelenturf, L., Long, S., Corman, F., & Niu, X. (2018, December). Optimal reassignment of passengers to trains following a broken train. In *2018 International Conference on Intelligent Rail Transportation (ICIRT)* (pp. 1-5). IEEE.
- ARE (2010). Nationales Personenverkehrsmodell des UVEK Basiszustand 2010. Ittigen.
- Debrezion, G., Pels, E., Rietveld, P., and others (2007). Choice of departure station by railway users.
- Veelenturf, L. P., Kidd, M. P., Cacchiani, V., Kroon, L. G., and Toth, P. (2015). A railway timetable rescheduling approach for handling large-scale disruptions. Transportation Science, 50(3):841–862.
- Binder, S., Maknoon, Y., and Bierlaire, M. (2017a). Efficient investigation of multiple dimensions of the railway timetable rescheduling problem. In Proceedings of the 17th Swiss Transportation Research Conference, Ascona, Switzerland.

References

- Binder, S., Maknoon, Y., and Bierlaire, M. (2017b). The multi-objective railway timetable rescheduling problem. Transportation Research Part C: Emerging Technologies, 78:78–94.
- Kroon, L., Maróti, G., and Nielsen, L. (2015). Rescheduling of railway rolling stock with dynamic passenger flows. Transportation Science, 49(2):165–184.
- Corman, F., D'Ariano, A., Marra, A. D., Pacciarelli, D., and Samà, M. (2017). In- tegrating train scheduling and delay management in real-time railway traffic control. Transportation Research Part E: Logistics and Transportation Review, 105:213–239.
- Dial, R. B. (1971). A probabilistic multipath traffic assignment model which obviates path enumeration. Transportation research, 5(2):83–111.
- Zhu, Y. and Goverde, R. M. (2019). Railway timetable rescheduling with flexible stopping and flexible short-turning during disruptions. Transportation Research Part B: Methodological, 123:149–181.

