#### Spatial tessellations of pedestrian dynamics

#### Marija Nikolić Michel Bierlaire Bilal Farooq

#### TRANSP-OR, Ecole Polytechnique Fédérale de Lausanne

hEART2013 -- 2nd Symposium of the European Association for Research in Transportation September, 2013, Stockholm





# Content

- Interest & Motivation
- Related work
- Methodology
- Preliminary results
- Conclusions and future work





# **Interest & motivation**

- Mathematical framework for detailed characterization of pedestrian flow indicators
- Understanding and predicting pedestrian flows
  - Efficient design of new facilities
  - Large events gathering a high number of people
  - Travel guidance
  - Congestion





#### Lausanne railway station







# **Related work 1/2**

- Models of pedestrian flow and behavior
  - Social force model (Helbing and Molnár, 1995)
  - Continuum model (Hughes, 2002)
  - Cellular automata (Blue and Adler, 2001)
- Empirical studies
  - Collective effects and self-organization phenomena
    - (Navin and Wheeler, 1969; Daamen and Hoogendoorn, 2003; Helbing et al., 2007; Schadschneider et al., 2008)
  - Quantitative analyses of pedestrian flow characteristics
    - (Fruin and Strakosch, 1987; Lam and Cheung, 2000; Helbing et al., 2001; Kretz et al., 2006; Wong et al., 2010; Rastogi et al., 2013)
  - Fundamental diagram
    - (Schadschneider et al., 2008; Zhang, 2012)





# **Related work 2/2**



#### Contradictory empirical data base

Complex nature of pedestrian interactions

External factors

Social and psychological aspects

Different types of facilities

Different types of pedestrian flow

Measurement methods

Source: (Daamen et al., 2005)





# **Data collection**



Source: (Alahi et al., 2013)

Case study: Gare de Lausanne

Depth sensors based pedestrian tracking

Vision processing outcome  $(t, x(t), y(t), pedestrian_{id})$ 





# **Data potential**



- Pedestrian flow characteristics
- Pedestrian behavior
  - Interaction with moving and static objects
  - Collective behavior
  - Self-organization of pedestrian groups

#### Model calibration and validation





# **Flow characteristics**

- Density (k) number of pedestrians present at some instant per unit of space
- Flow (q) number of pedestrians passing a fixed cross-section per unit of time
- Speed
  - Space mean speed  $(v_s)$  average speed of pedestrians at some instant per unit of space
  - Time mean speed  $(v_t)$  average speed of pedestrians passing through a given point per unit of time





# Grid space representation Density map

The grid based method transforms the space into cell regions

Corridor density map (18.09.2012, 07:17:01)

– Each cell - entirely homogenous



- Cell sizes: 2.5m ×43m, 2.5m ×21.5m, 2.5m×10.75m
- Modifiable areal unit problem





# **Voronoi space representation** *Density map*





Table: Pedestrian walkway LoS density threshold values according to NCHRP (in SI units).

• Voronoi cell

$$- V(p_i) = \left\{ p \, \Big| \, \|p - p_i\| \le \|p - p_j\|, i \neq j \right\}$$

Voronoi diagram

 $V = \{V(p_1) \cap RoI, V(p_2) \cap RoI, \dots, V(p_n) \cap RoI\}$ ANSP-DR



# Merging cells

- Issue: small polygons allocated to pedestrians in very dense areas
  - Clustering based on Delaunay triangulation  $d(pi, pj) < \delta$ ,  $\forall i, j$
  - Weight associated to the corresponding space  $w_i$



# **Dealing with obstacles**



Voronoi assumption

It is possible to connect two generator points by a straight line

Voronoi diagram for points & Voronoi diagrams for areas

$$d(p_i, 0) = \min_{o_j} \{ \| p_i - o_j \| | o_j \in 0 \}$$





# **Pedestrian flow indicators**

• Space-time representation

$$p_i = (x_i, y_i, t_i)$$

Density

$$k(p_i) = \frac{w_i}{|V(p_i)|}$$

• Speed

$$v_s(p_i) = \frac{\|p_i(t_i - \Delta t) - p_i(t_i + \Delta t)\|}{2 \cdot \Delta t}, \Delta t = 0.5s$$

 $w_i$  - weight corresponding to the group of pedestrians





# **Empirical speed-density relationship**









# **Speed-density profiles**



# **Kumaraswamy distribution**



NSP-OR

- Defined on the bounded region [l, u]
- Two non-negative shape parameters  $\alpha$  and  $\beta$
- The simple closed form of pdf f(x)and cdf F(x)

$$f(x) = \frac{\alpha \cdot \beta \cdot (x-l)^{\alpha-1} \cdot ((u-l)^{\alpha} - (x-l)^{\alpha})^{\beta-1}}{(u-l)^{\alpha\beta}}$$
$$F(x) = 1 - (1 - \left(\frac{x-l}{u-l}\right)^{\alpha})^{\beta}$$



# **Probabilistic speed-density relationship**



$$V \sim f(\alpha(k), \beta(k), l(k), u(k))$$

- f Kumaraswamy *pdf*
- V- speed
  - k density level
  - $\alpha$ ,  $\beta$  shape parameters
  - *l*, *u* boundary parameters





#### **Parameters specification**



ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

# **Model specification**

Speed-density relationship

 $V{\sim}f(\alpha(k),\beta(k),l(k),u(k))$ 

|               |                                                                | Specification 2                                            |  |  |  |  |
|---------------|----------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|
| $\alpha(k)$   | $a_{\alpha}k^{3} + b_{\alpha}k^{2} + c_{\alpha}k + d_{\alpha}$ | $a_{\alpha}k^3 + b_{\alpha}k^2 + c_{\alpha}k + d_{\alpha}$ |  |  |  |  |
| $\beta(k)$    | $a_{\beta} \exp(b_{\beta}k)$                                   | $a_{\beta} \exp(b_{\beta}k)$                               |  |  |  |  |
| u( <i>k</i> ) | $a_{\rm u} \exp(b_{\rm u} k)$                                  | $a_u k^3 + b_u k^2 + c_u k + d_u$                          |  |  |  |  |
| l(k)          | 0                                                              | 0                                                          |  |  |  |  |

## **Model estimation**

• Maximum log-likelihood

TRANSP-OR

$$log \mathcal{L} = \sum_{i=1}^{n} \log(\alpha(k_i)) + \sum_{i=1}^{n} \log(\beta(k_i)) + \sum_{i=1}^{n} (\alpha(k_i) - 1) \log(v_i - l(k_i)) + \sum_{i=1}^{n} (\beta(k_i) - 1) \log((u(k_i) -$$

|                 | $a_{\alpha}$ | $b_{lpha}$ | Cα      | $d_{lpha}$ | a <sub>β</sub> | b <sub>β</sub> | a <sub>u</sub> | b <sub>u</sub> | C <sub>u</sub> | $d_u$  | LL            |
|-----------------|--------------|------------|---------|------------|----------------|----------------|----------------|----------------|----------------|--------|---------------|
| Specification 1 | 0.248        | -0.6968    | 0.1603  | 2.2452     | 68.894         | -0.8751        | 8.0608         | -0.2833        |                |        | -1.6497e+05   |
| Specification 2 | 0.0498       | -0.2823    | -0.0207 | 2.0089     | 45.362         | -0.5945        | 0.0002         | -0.0002        | -0.0010        | 8.0017 | -1.699372e+05 |
|                 |              |            |         |            |                |                |                |                |                |        | (PAL          |

 $u(k_i) \le \max(v_i), i = 1, \dots, n$ 



# Conclusion

- High data potential
  - Detailed pedestrian flow studies
- Voronoi representation of space
  - Good space resolution
  - Reveals phenomenon not observable with the other methods
- Pedestrian oriented definitions of flow indicators
- Probabilistic speed-density relationship





#### **Future work**

- Validation of the speed-density model
- Time discretization
  - Consistent with the philosophy of space decomposition
- Definition of flow indicator





# **THANK YOU**





# **References 1/2**

- Alahi, A., L., Bagnato, Chanel D. and A., Alahi (2013) Visiosafe Analytic, Technical report for SBB network of sensors (Switzerland)
- Blue, V.J., Adler, J.L., 2001. Cellular automata microsimulation for modeling bidirectional pedestrian walkways. Transp. Res. Part B Methodol. 35, 293–312.
- Daamen, W., Hoogendoorn, S. P., & Bovy, P. H., 2005. First-order pedestrian traffic flow theory. Transportation Research Record: Journal of the Transportation Research Board, 1934(1), 43-52.
- Helbing, D., Molnár, P., 1995. Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286.
- Hughes, R.L., 2002. A continuum theory for the flow of pedestrians. Transp. Res. Part B Methodol. 36, 507–535.





#### **References 2/2**

- Løvås, G.G., 1994. Modeling and simulation of pedestrian traffic flow. Transp. Res. Part B Methodol. 28, 429–443.
- Nikolic, M., Farooq, B., and Bierlaire, M., 2013. Exploratory analysis of pedestrian flow characteristics in mobility hubs using trajectory data. Proceedings of the Swiss Transportation Research Conference (STRC) 24-26 April, 2013.



