Passenger-Centric Railway Operations

Michel Bierlaire Stefan Binder Yousef Maknoon Tomáš Robenek

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

May 19, 2015
Outline

1. Demand and supply
2. Measuring satisfaction
3. Ideal timetable
4. Disposition timetable
5. Conclusion
Demand and supply

Demand models

- Supply = infrastructure
- Demand = behavior, choices
- Congestion = mismatch
Demand models

- Usually in OR:
 - optimization of the supply
 - for a given (fixed) demand
Demand and supply interactions

Operations Research
- Given the demand...
- configure the system

Behavioral models
- Given the configuration of the system...
- predict the demand
Demand-supply interactions

Multi-objective optimization

Minimize costs

Maximize satisfaction
Outline

1. Demand and supply
2. Measuring satisfaction
3. Ideal timetable
4. Disposition timetable
5. Conclusion
Measuring satisfaction

Behavioral models

- Demand = sequence of choices
- Choosing means trade-offs
- In practice: derive trade-offs from choice models
- Main concept: utility function
- Common model: logit
Logit model

Utility

\[U_{in} = V_{in} + \varepsilon_{in} \]

- Decision-maker \(n \)
- Alternative \(i \in C_n \)

Choice probability

\[P_n(i|C_n) = \frac{e^{V_{in}}}{\sum_{j \in C_n} e^{V_{jn}}} \]
Measuring satisfaction

Variables: $x_{in} = (z_{in}, s_n)$

Attributes of alternative i: z_{in}
- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Characteristics of decision-maker n: s_n
- Income
- Age
- Sex
- Trip purpose
- Car ownership
- Education
- Profession
- etc.
Willingness to pay

Attributes of alternative \(i \): \(z_{in} \)
- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Willingness to pay for alternative \(i \)
- Value of travel time
- Value of waiting time
- Value of comfort
- Value of transfers
- Value of not being on time
- etc.
Willingness to pay

Utility

\[U_{in} = \beta_c c_{in} + \beta_t t_{in} + \cdots \]

Value of time

\[VOT_{in} = \frac{\partial U_{in}/\partial t_{in}}{\partial U_{in}/\partial c_{in}} = \frac{\beta_t}{\beta_c} \]
Measuring satisfaction

Equivalence

Utility

\[U_{in} = \beta_c c_{in} + \beta_t t_{in} + \beta_w w_{in} + \beta_{cft} c_{ft_{in}} + \beta_T T_{in} + \beta_e e_{in} + \beta_\ell \ell_{in} + \cdots \]

Willingness to pay: cost per unit
- Travel time: \(\beta_t / \beta_c \)
- Waiting time: \(\beta_w / \beta_c \)
- Comfort: \(\beta_{cft} / \beta_c \)
- Transfers: \(\beta_T / \beta_c \)
- Being early: \(\beta_e / \beta_c \)
- Being late: \(\beta_\ell / \beta_c \)

Travel time equivalent: hours per unit
- Cost: \(\beta_c / \beta_t \)
- Waiting time: \(\beta_w / \beta_t \)
- Comfort: \(\beta_{cft} / \beta_t \)
- Transfers: \(\beta_T / \beta_t \)
- Being early: \(\beta_e / \beta_t \)
- Being late: \(\beta_\ell / \beta_t \)
Outline

1. Demand and supply
2. Measuring satisfaction
3. Ideal timetable
4. Disposition timetable
5. Conclusion
Planning of railway operations

STRATEGIC - several years

Demand → Line Planning → Lines → Ideal Train Timetabling → Ideal Timetables

TACTICAL - >= 1 year

Ideal Timetables → Train Timetabling

OPERATIONAL - < 1 year

Train Timetables → Actual Timetables → Train Platforming → Platform Assignments

Actual Timetables → Rolling Stock Planning → Train Assignments

Actual Timetables → Crew Planning → Crew Assignments
Timetables

Objectives
- Minimize cost
- Maximize satisfaction

Constraints
- Cyclicity
 - or not...
Modeling elements

Supply
- Line ℓ: sequence of stations served by the same train
- Train $v \in V_\ell$: service of a line at a given departure time

Demand
- Origin / destination i
- Ideal arrival time t
- Path $p \in P_i$: sequence of portions of lines to reach d from o
 - Access/egress time for path p (OD i)
 - Travel time for path p
 - Waiting time for path p
Ideal timetable

Model

Decision variables

- x_{i}^{tp}: 1 – if passenger with ideal time t between OD pair i chooses path p; 0 – otherwise
- y_{i}^{tplv}: 1 – if a passenger with ideal time t between OD pair i on the path p takes the train v on the line ℓ; 0 – otherwise
- d_{ℓ}^{v}: the departure time of a train v on the line ℓ (from its first station)
- u_{ℓ}^{v}: number of train units of a train v on the line ℓ
- α_{ℓ}^{v}: 1 – if a train v on the line ℓ is being operated; 0 – otherwise
Model

Calculation variables

- C^t_i: total cost of a passenger with ideal time t between OD pair i
- w^t_i: total waiting time of a passenger with ideal time t between OD pair i
- s^t_i: value of the scheduled delay of a passenger with ideal time t between OD pair i
- $z^ℓ_ν$: dummy variable modeling the cyclicity corresponding to a train $ν$ on the line $ℓ$
- $o^ℓ_νg$: occupation of train $ν$ of line $ℓ$ on segment g
Model

Problem constraints

- passenger cost $\leq \varepsilon$
- everyone uses at most one path
- link between path and trains: everyone boards one train of each line in the path
- cyclicity
- everyone uses only trains that are actually running
- train capacity
- maximum number of train units
Calculation constraints

- Scheduled delay
- Waiting time
- Overall cost
Models

Current model
Departure times of trains are fixed, current values are used (cyclic).

Cyclic model
Departure times are optimized, cyclicity is enforced.

Non-cyclic model
Departure times are optimized, cyclicity is not enforced.
Case Study – Switzerland
S-Train Network Canton Vaud, Switzerland
Case study: Switzerland

Context

- SBB 2014 (5 a.m. to 9 a.m.)
- OD Matrix based on observation and SBB annual report
- 13 Stations
- 156 ODs
- 14 (unidirectional) lines
- 49 trains
- Min. transfer – 4 mins
Case study: Switzerland

Willingness to pay from the literature

- Value of travel time: 27.81 CHF / hour
- Value of waiting time: 69.5 CHF / hour
- Value of comfort: —
- Value of transfers: 4.6 CHF / hour (10 min. travel time)
- Value of being late: 27.81 CHF / hour
- Value of being early: 13.9 CHF / hour
- etc.
Pareto: current model
Pareto: cyclic model
Ideal timetable

Pareto: non cyclic

Figure:

- **Profit** (red line)
- **Passenger cost** (green dashed line)
- **Drivers** (blue dotted line)
- **Rolling stocks** (purple dash-dotted line)

Axes:
- **CHF** on the y-axis
- **Number** on the x-axis

Legend:
- Profit
- Passenger cost
- Drivers
- Rolling stocks

Graph Description:

- The graph illustrates the trade-offs between different cost categories and profit as a function of the parameter \(\varepsilon \) (percentage).
- Profit decreases as \(\varepsilon \) increases, while passenger cost and rolling stocks costs show an increasing trend.
- Drivers costs remain relatively stable across different values of \(\varepsilon \).

Table:

<table>
<thead>
<tr>
<th>(\varepsilon) (%)</th>
<th>Profit</th>
<th>Passenger cost</th>
<th>Drivers</th>
<th>Rolling stocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source:

Bierlaire et al. (EPFL) - Passenger-Centric Railway Operations

May 19, 2015
Impact of congestion

![Graph showing the impact of congestion on passenger cost. The graph has two curves: one for current operations and another for cyclic operations. The graph shows that the non-cyclic operations have a lower passenger cost compared to the cyclic operations.](image)
Outline

1. Demand and supply
2. Measuring satisfaction
3. Ideal timetable
4. Disposition timetable
5. Conclusion
Motivation

Figure: Bray Head, Railway Accident, Ireland, 1867. The Liszt Collection.
Recovery strategies

- Train cancellation
- Partial train cancellation
- Global re-routing of trains
- Additional service (buses/trains)
- “Direct train”
- Increase train capacity

Research question
What are the impacts, in terms of passenger (dis-)satisfaction, of different recovery strategies in case of a severe disruption in a railway network?
Outline

1. Demand and supply
2. Measuring satisfaction
3. Ideal timetable
4. Disposition timetable
5. Conclusion
Conclusions

Importance of demand
- Passenger satisfaction
- Choice behavior
- Willingness to pay
- Heterogeneity

Railway applications
- Ideal timetables
- Disposition timetables