Gating as a management strategy for controlling pedestrian flows

Nicholas Molyneaux, Riccardo Scarinci, Michel Bierlaire

7th Symposium of the European Association for Research in Transporation (hEART)

September 5th 2018

Outline

- 1 Introduction
- Proposed management strategies
 - Gating
 - Flow separators
- 3 Results
 - Gating results
 - Flow separators results
- 4 Conclusion & next steps

Introduction

Introduction

•0000000

Context

Pedestrians suffer from congestion just as vehicles do:

- increased travel time.
- excessive density.

Which in turn can make you:

- be late for your job interview,
- despise traveling in public,
- miss you connecting train or plane,

Context

Introduction

0000000

Higher capacity & faster PT services, to serve higher demand.

Context

Introduction

00000000

Some of the services available at the Lausanne (CH) train station...

Motivation

- Lack of comfort, hazardous situations
- How to ensure a satisfactory level-of-service & safety?
 - Decrease pedestrian demand (counter productive!)
 - Spread the load over time & space
 - Influence pedestrian's routes
- Simulation is needed to address the complexity of the problem

Goal: Integrate management strategies specific to pedestrian traffic within a Dynamic Traffic Management System (DTMS).

Framework

Introduction

00000•00

fig/framework.pdf

Gating as a management strategy for controlling pedestrian flows

Strategies

Introduction

00000000

What specific measures can be considered to impact dynamics:

- Adjustments to the PT schedule
- Control access to specific areas ⇒ gates
- Change link travel time ⇒ moving walkways
- Prevent counter flow ⇒ flow separators
- Attract pedestrians to specific locations

Existing strategies

Introduction

0000000

Pedestrian management

- Little research on specific strategies.
- Some static measures (design) have be studied.

Road traffic management

- Ramp metering
- Perimeter control
- Variable message signs
- Traffic lights

TRANS-FORM

Proposed strategies

Gating

Introduction

Prevent excess travel time in junctions.

Flow separators

Avoid counter flow in corridors.

Proposed management strategies Gating

Objective

Introduction

At corridor intersections, highly disordered flows takes place.

Prevent too many individuals from crossing the intersection simultaneously (qualitative). \rightarrow Prevent increase in travel time.

Measure pedestrian density (quantitative). \rightarrow How?

Some possibilities for measuring density:

Pedestrian accumulation

snapshot

Introduction

Voronoi based

snapshot

Edie's definition

• average over time

Some possibilities for measuring density:

Pedestrian accumulation

snapshot

Introduction

sensitive to delimited area

Voronoi based

- snapshot
- expensive to compute

Edie's definition

- average over time
- sensitive to delimited area

Some possibilities for measuring density:

Pedestrian accumulation

snapshot

Introduction

sensitive to delimited area.

provides average values

Voronoi based

- snapshot
- expensive to compute

- provides individual values
- aggregation may be required

Edie's definition

- average over time
- sensitive to delimited area

- provides average values
- strong physical interpretation

Introduction

The indicator used is the following:

For a density threshold $\bar{\rho}$, for a given snapshot taken at time t, count the number of individuals where $\rho_i(t) > \bar{\rho}$.

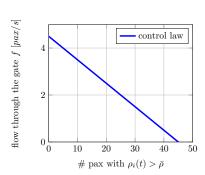
This gives a pedestrian-centric measurement (nearly) independent of any "zone".

Introduction

fig/gating-zone.pdf

Gating as a management strategy for controlling pedestrian flows

Control law


Parameters

Introduction

- density threshold: $\bar{\rho}$
- uncontrolled flow: f(0)
- cut off value: f(?) = 0

Calibration based on:

- fundamental diagram
- distribution of individual densities

Proposed management strategies Flow separators

Objective

Head-on-head "collisions" induce significant extra travel time.

1

Reduce this counter-flow to a minimum.

1

Dynamically allocate part of the available corridor width to each direction.

Width available for each direction is proportional to flows:

$$w_{AB} = egin{cases} w \cdot f_{min,AB}, & ext{if } rac{\sum q_{in,A}}{\sum q_{in,A} + \sum q_{in,B}} \leq f_{min,AB} \ w \cdot f_{max,AB}, & ext{if } rac{\sum q_{in,A}}{\sum q_{in,A} + \sum q_{in,B}} \geq f_{max,AB} \ w \cdot rac{\sum q_{in,A}}{\sum q_{in,A} + \sum q_{in,B}}, & ext{otherwise} \end{cases}$$

Results

Case study setup

Gating

Introduction

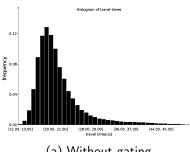
- crossed shaped junction
- demand pattern:
 - sinusoidal for two directions
 - uniform for other two

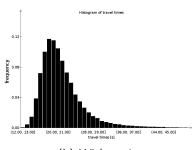
Flow separators

- straight corridor
- shifted sine-shaped flows

Case study setup

- Disaggregate pedestrian motion model: NOMAD.
- Graph-based route choice (but no significant role here).
- Multiple simulations runs.


ResultsGating results

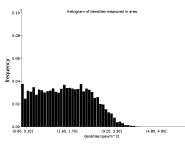


Travel times

Introduction

(a) Without gating

(b) With gating

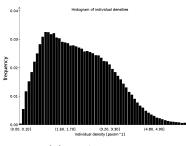

No significant difference in mean travel time: 21.04s VS 21.18s Reduction in travel time variance: $5.16s \rightarrow 4.41s \ (-14\%)$

Average density

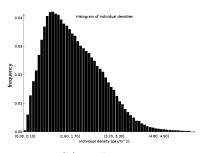
Introduction

(a) Without gating

(b) With gating


Decrease of

- mean density: $1.57 pax/m^2 \rightarrow 1.42 pax/m^2 (-9.5\%)$
- density variance: $0.93pax/m^2 \rightarrow 0.72pax/m^2 (-22\%)$



Individual density

Introduction

(a) Without gating

(b) With gating

Decrease of

- mean density: $2.18 pax/m^2 \rightarrow 1.82 pax/m^2 (-16\%)$
- density variance: $1.22pax/m^2 \rightarrow 1.02pax/m^2$ (-16%)

Improvements

Introduction

- less risk of gridlock.
- better level-of-service in the junction.

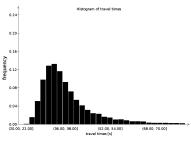
without increasing travel time.

Open questions:

- shape of the control law ?
- parameter calibration ?
- can travel time be improved ?

Results

Flow separators results



TRANS-FORM

Travel times

Introduction

(a) Without flow separators

(b) With flow separators

Significant improvement in

- mean travel time: $37.86s \rightarrow 30.31s \ (-19\%)$
- travel time variance: $9.94s \rightarrow 3.39s \ (-66\%)$

Conclusion & next steps

Conclusions

- Integration of two pedestrian control strategies in a DTMS.
- Gating improves the level-of-service and helps prevent gridlock.
- Flow separators significantly improves the travel time.

Next steps

- 1. Investigate more complex control laws.
- 2. Model predictive control.
- 3. Simulation based optimization.
- 4. Dynamic control of accelerated moving walkways.

Results

Thank you for your attention!

nicholas.molyneaux@epfl.ch

Acknowledgments

This research was performed as part of the TRANS-FORM (Smart transfers through unravelling urban form and travel flow dynamics) project funded by the Swiss Federal Office of Energy SFOE and Federal Office of Transport FOT grant agreement SI/501438-01 as part of JPI Urban Europe ERA-NET Cofound Smart Cities and Communities initiative. We thankfully acknowledge both agencies for their financial support.

