Pedestrian management strategies for improving flow dynamics in transportation hubs

Nicholas Molyneaux, Riccardo Scarinci, Michel Bierlaire

17th Swiss Transport Research Conference Monte Verità, May 17th – 19th 2017

May 18th 2017

Introduction

Management strategies

Simulation framework

Case study

Outline

- Hard strategies
- Soft strategies
- Simulation framework 3
 - Pedestrian movement models
 - Activity scheduling
 - Train induced flows
 - Key performance indicators
 - Case study

NSP-UR

Introduction Management strategies Simulation framework Case study Conclusion References

Comments after presentation

- Clarify my contribution: mgmt strategies and not mvmt model or act scheduling. Insist more on box structure.
- Framework which can be used with different codes
- Not spend too much time implementing
- Disaggregation process: when, how ? Agg seems ok from SF
- Add event based framework, would clarify I think.
- Event based with mesoscopic ?
- Really need define framework with plug/play structure.

Introduction	Management strategies	Simulation framework	Case study	Conclusion	References
	000000	000000000		🐺 TRANS	-FORM

Introduction

- Strong increase in public transport demand
- All PT services require an infrastructure for pedestrians to use the services \rightarrow transportation hubs
- When many different services arrive at the same time in the hub \rightarrow pedestrian congestion

- Congested infrastructures are uncomfortable for users and possibly dangerous
- Variability in pedestrian travel times makes schedule adherence challenging
- Goal: keep good LOS and decrease trip variability
- Some possible actions to accomplish this (not all are recommended!):
 - Decrease pedestrian demand
 - Spread the load over time & space
 - Management strategies
 - Improve dynamics
 - ...
- How to know which ones are effective, feasible or financially manageable ?

Motivation (ctnd)

- Need a framework for evaluating possible measures
- As many measures are expensive to put in place, a simulation framework should be available

∜

- Evaluate impact of management strategies for improving pedestrian flow dynamics
- Requirements
 - Management strategies
 - Pedestrian simulator
 - Measurement of impact

State-of-the-art

- Pedestrian movement models have been extensively covered in the past decade
- Activity scheduling models & route choice models exist for pedestrians
- but...
- Only some management/control strategies have been applied in transportation hubs
- Very few studies considering multiple strategies together

\Downarrow

• Develop a framework which uses management strategies as control variables for improving pedestrian dynamics

Introduction	Management strategies	Simulation framework	Case study	Conclusion	References
	000000	000000000			-FORM

Management strategies

Management strategies

Simulation framework

Management policies (control policies)

Many different elements can be considered:

- Direct flow control (barriers)
- Public transport schedule
- Moving walkways
- Businesses (shops)
- Information
- ...

Inte	odu	1Ct1/	20
IIILI	out	activ	211

Management strategies

Simulation framework

Case study

Management strategies Hard strategies

What control strategies can be used for influencing the flows

- Restrict access to areas of infrastructure
- Block access to platforms until passengers have disembarked
- Create bi-directional flows using corridor separators
- Traffic lights

Moving walkways

How could moving walkways be used to control pedestrian flows?

- Control velocity
- Direction can be changed dynamically •
- Control the number of people arriving (flow)

but...

- Heavy infrastructure
- User acceptance

Introduction Management strategies Simulation framework Case study Conclusion

Management strategies Soft strategies

Pedestrian management strategies for improving flow dynamics in transportation hubs

References

TRANS-FORM

What type and when can information be provided to passengers:

- The connecting train will wait for X minutes
- Inform passenger prior to arrival about the state fo the system
- Suggest next connection based on congestion (will miss planned connection)
- Screens to inform of congestion inside train station
- Occupancy inside PT vehicles

all these elements require modelling compliance

• (Dynamic) floor markings

ANSP-DR

• Attractors/POI (shops, ticket machines, kiosks, etc)

Introduction Man

Management strategies

Simulation framework

Case study

Simulation framework

Goal: develop a simulation framework which can measure the impact of management strategies. Components which are required:

- Input (data, pedestrian demand)
- Pedestrian movement model
- Activity scheduling model
- Controller for management strategies
- Output (results: density, travel times, etc)

 \Downarrow

Supply-demand interaction

13 / 23

FÉDÉRALE DE LAUSANNE

Introduction

Management strategies

Simulation framework

Case study

Simulation framework

Pedestrian movement models

Introduction

Management strategies

Simulation framework

Aggregate model (Network based)

Pedestrians are aggregated into flows, they are considered as a continuum.

- + No requirement of close interaction models
- + Lower computational cost
 - Loose track of individual pedestrians

Simulation framework

Case study Conclusion

References

TRANS-FORM

Disaggregate model (Social force model)

Pedestrians are considered individually

- + Fine control over pedestrian characteristics
- + Precise modelling of interaction (pedestrians and environment)
- + A pedestrian is "followed", dynamically update destination
- + Convenient for individual decision making (activity scheduling)
 - Can be expensive to compute

Social force model

We decided to use the social force model (at least for now)

- activity choice \rightarrow agent-based is conceptually easier
- can use parameters from literature
- result precision
- interactions with attractors/POI can be done
- calibration using specific data for case study will be considered

Pedestrian management strategies for improving flow dynamics in transportation hubs

16 / 23

Introduction

Management strategies

Simulation framework

Case study

Simulation framework Activity scheduling

Simulation framework

Case study

Route choice

Utility maximization:

- highly customizable framework
- agent specific parameters
- generalized cost \rightarrow multiple components

Some decisions agents can take:

- choose their route
- take a different PT service
- choose to buy a coffee (or something else)
- simply wait

Introduction

Management strategies

Simulation framework

Case study

Simulation framework Train induced flows

From PT vehicle to pedestrians: a disaggregation process

- PT vehicle based events
- Applicable to many different measurable quantities
 - flows: cumulated counts or arrival rates (y)
 - densities
 - occupation

$$\tilde{y} = \sum_{r,s} f(t; \gamma_{r,s}, t_{r,s}) + \varepsilon$$

with (r, s) a vehicle, f a function linking the vehicle to pedestrian quantities, $\gamma_{r,s}$ parameters specifying f, $t_{r,s}$ the vehicle arrival or departure time and ε the random error term

Introduction

Management strategies

Simulation framework

Case study

Simulation framework Key performance indicators

ÉCOLE POLYTECHNIQUE

To quantify the impact of a policy, indicators need to be defined:

- Travel time: slower travel times can indicate higher congestion
- Velocity: Deviation from a passenger's free flow speed
- Density: Higher densities can imply a lower LOS
- Transfer success: the fewer people miss their connection, the better

Introduction	Management strategies	Simulation framework	Case study	Conclusion	References
	000000	000000000		TRANS	-FORM

Case study

Lausanne's train station

Empirical tracking data on current Lausanne station:

- Detailed data which can be used for calibration.
- Train induced flows have been developed.
- Aggregate dynamics can be observed.
- Probabilistic fundamental diagrams can be characterized.

The new Lausanne station is considered for framework case study:

- Three pedestrian underpasses
- Shops
- Longer trains & platforms
- New metro line

Introduction

Management strategies

Simulation framework

Case study

Lausanne's train station

Figure: Current station, [Hänseler, 2016].

ANSP-OR

Figure: Future station, [SBB, 2017].

Introduction	Management strategies	Simulation framework	Case study	Conclusion	References
	000000	000000000		TRANS	FORM

Conclusion

- Integrative framework with different components \rightarrow flexibility.
- Ultimately, use as optimization tool for pedestrian infrastructure.

Next steps:

- Implement pedestrian movement model.
- Implement activity choice model.
- Controller formulation.
- Calibration ?

Thank you ! nicholas.molyneaux@epfl.ch

Introduction	Management strategies	Simulation framework	Case study	Conclusion	References
	000000	000000000		TRANS	-FORM

References

Hänseler, F. S. (2016). *Modeling and estimation of pedestrian flows in train stations*. PhD thesis, ENAC, Lausanne.

Introduction Management strategies Simulation framework Case study Conclusion References **TRANS-FORM**

Pedestrian simulation events

Pedestrian management strategies for improving flow dynamics in transportation hubs RANSP-OR

23 / 23

Management strategy events

Pedestrian management strategies for improving flow dynamics in transportation hubs

23 / 23

TRANSP-OR

Introduction Management strategies Simulation framework 0000000 Case study Conclusion References

Model - flow specification

ANSP-OR

• Piecewise linear (PWL) function specifying the cumulated unloading flows

$$f = \begin{cases} 0 & t < t_{r,s} + \Delta t_{r,s}^{lag} \\ \alpha_{r,s} \cdot t & \text{for} & t \in (t_{r,s} + \Delta t_{r,s}^{lag}, t_{r,s} + \Delta t_{r,s}^{lag} + \Delta t_{r,s}^{flow}) \\ Q_{r,s} & t \ge t_{r,s} + \Delta t_{r,s}^{lag} + \Delta t_{r,s}^{flow} \end{cases} , \quad \Delta t_{r,s}^{flow} = \frac{Q_{r,s}}{\alpha_{r,s}}$$

Pedestrian management strategies for improving flow dynamics in transportation hubs

23 / 23

- Model route choice
 - Pedestrians disembarking from trains choose an access ramp based on proximity, saturation and final destination
 - A priori guess: longer train spread demand over all access ways whereas short trains concentrate demand in the closest access ways

- For loading flows:
 - loading rate [ped/s]
- For unloading flows, train specific parameters:
 - unloading rate [ped/s]
 - disembarking passengers
 - dead time [s]
- Access way choice
 - logit model with travel time as utility

