Vehicle Routing and Demand Forecasting in a Generalized Waste Collection Problem

Iliya Markov1,2, Matthieu de Lapparent1, Sacha Varone2, Michel Bierlaire1

1Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
École Polytechnique Fédérale de Lausanne

2Haute École de Gestion de Genève
University of Applied Sciences Western Switzerland (HES-SO)

VeRoLog 2015 / Vienna, June 8–10, 2015
Contents

1 Introduction

2 Vehicle Routing

3 Demand Forecasting

4 Conclusion
Contents

1 Introduction
2 Vehicle Routing
3 Demand Forecasting
4 Conclusion
Ecological waste management

ecopoint in Rue de Neuchâtel, Geneva; photo source: self
Sensorized containers periodically send waste level data to a centralized database.
In more details...

- Sensorized containers periodically send waste level data to a centralized database.
- Level data is used for container selection and vehicle routing, with tours often planned several days in advance.
In more details...

- Sensorized containers periodically send waste level data to a centralized database.
- Level data is used for container selection and vehicle routing, with tours often planned several days in advance.
- Vehicles are dispatched to carry out the daily schedules produced by the routing algorithm.
In more details...

- Sensorized containers periodically send waste level data to a centralized database.
- Level data is used for container selection and vehicle routing, with tours *often planned several days in advance*.
- Vehicles are dispatched to carry out the daily schedules produced by the routing algorithm.
- Efficient waste collection thus depends on the ability to:
 - make **good forecasts** of the container levels at the time of collection.
 - and **optimally route** the vehicles to service the selected containers.
In more details...

- Sensorized containers periodically send waste level data to a centralized database.
- Level data is used for container selection and vehicle routing, with tours *often planned several days in advance*.
- Vehicles are dispatched to carry out the daily schedules produced by the routing algorithm.
- Efficient waste collection thus depends on the ability to:
 - make **good forecasts** of the container levels at the time of collection.
 - and **optimally route** the vehicles to service the selected containers.
Contents

1 Introduction
2 Vehicle Routing
3 Demand Forecasting
4 Conclusion
Problem description

- Multiple depots, containers, and dumps (recycling plants) with TW
Problem description

- Multiple depots, containers, and dumps (recycling plants) with TW
- Maximum tour duration, interrupted by a break
Problem description

- Multiple depots, containers, and dumps (recycling plants) with TW
- Maximum tour duration, interrupted by a break
- Site dependencies (accessibility restrictions)
Problem description

- Multiple depots, containers, and dumps (recycling plants) with TW
- Maximum tour duration, interrupted by a break
- Site dependencies (accessibility restrictions)
- Tours are sequences of collections and disposals at the available dumps, with a mandatory disposal before the end
Problem description

- Multiple depots, containers, and dumps (recycling plants) with TW
- Maximum tour duration, interrupted by a break
- Site dependencies (accessibility restrictions)
- Tours are sequences of collections and disposals at the available dumps, with a mandatory disposal before the end

Tours need not finish at the depot they started from
- flexible assignment of destination depots
- practiced in sparsely populated rural areas
Problem description

- Multiple depots, containers, and dumps (recycling plants) with TW
- Maximum tour duration, interrupted by a break
- Site dependencies (accessibility restrictions)
- Tours are sequences of collections and disposals at the available dumps, with a mandatory disposal before the end

- **Tours need not finish at the depot they started from**
 - flexible assignment of destination depots
 - practiced in sparsely populated rural areas

- **There is a heterogeneous fixed fleet**
 - different volume and weight capacities, speeds, costs, etc...
Problem description

Figure 1: Tour illustration

c = container
State of the art (VRP-IF)

- VRP with satellite facilities (Bard et al., 1998)
 - no time windows, no driver break, homogeneous fleet
 - branch-and-cut

- Waste collection VRP (Kim et al., 2006)
 - time windows, driver break, homogeneous fleet
 - simulated annealing

- MDVRPI (Crevier et al., 2007)
 - no time windows, no driver break, homogeneous fleet at single depot
 - SP on a pool of single-depot, multi-depot and inter-depot routes
State of the art (Electric VRP)

- Recharging VRP (Conrad and Figliozzi, 2011)
 - recharging at customer sites with time windows, homogeneous fleet
 - mathematical model, derived solution bounds

- Green VRP (Erdoğan and Miller-Hooks, 2012)
 - maximum tour duration, no time windows, homogeneous fleet
 - two construction heuristics and an improvement procedure

- E-VRPTW with recharging stations (Schneider et al., 2014a)
 - hierarchical objective, variable recharging times, TW, homog. fleet
 - hybrid VNS/TS

- VRP with intermediate stops (Schneider et al., 2014b)
 - combination of recharging and reloading decisions
 - weighted objective, max tour duration, no time windows, homog. fleet
 - ALNS
State of the art (Other)

- **Heterogeneous fixed fleet VRP (HFFVRP)**
 - proposed by Taillard (1996)
 - best exact solutions by Baldacci and Mingozzi (2009)
 - best heuristic solutions by Subramanian et al. (2012) and Penna et al. (2013)

- **Flexible assignment of depots**
 - Kek et al. (2008): a case study in Singapore finds significant benefits
Contributions

- Integration of dynamic destination depot assignment into the VRP-IF
 - consideration of relocation costs

- Integration of heterogeneous fixed fleet into the VRP-IF
 - challenges posed by intermediate facility visits

- Benchmarking to several classes of simpler problems from the literature and state of practice
 - *E-VRPTW (modified from Schneider et al., 2014a)*
 - *MDVRPI (Crevier et al., 2007)*
 - optimal solutions, state of practice, etc...
Formulation

Sets

\[O' = \text{set of origins} \quad O'' = \text{set of destinations} \]
\[D = \text{set of dumps} \]
\[N = O' \cup O'' \cup D \cup P \]
\[K = \text{set of vehicles} \]

Parameters

\[\pi_{ij} = \text{length of edge } (i, j) \]
\[\alpha_{ijk} = 1 \text{ if edge } (i, j) \text{ is accessible for vehicle } k, 0 \text{ otherwise} \]
\[\tau_{ijk} = \text{travel time of vehicle } k \text{ on edge } (i, j) \]
\[\epsilon_i = \text{service duration at point } i \]
\[[\lambda_i, \mu_i] = \text{time window lower and upper bound at point } i \]
\[H = \text{maximum tour duration} \]
\[\eta = \text{maximum continuous work limit after which a break is due} \]
\[\delta = \text{break duration} \]
\[\rho_i^v, \rho_i^w = \text{volume and weight pickup quantity at point } i \]
\[\Omega_k^v, \Omega_k^w = \text{volume and weight capacity of vehicle } k \]
\[\phi_k = \text{fixed cost of vehicle } k \]
\[\beta_k = \text{unit-distance running cost of vehicle } k \]
\[\theta_k = \text{unit-time wage rate of vehicle } k \]
\[\Psi = \text{weight of relocation cost term} \]
Formulation

Decision variables: binary

\[x_{ijk} = \begin{cases}
1 & \text{if vehicle } k \text{ traverses edge } (i,j) \\
0 & \text{otherwise}
\end{cases} \]

\[z_{ijk} = \begin{cases}
1 & \text{if } i \text{ and } j \text{ are, respectively, the origin and destination of vehicle } k \\
0 & \text{otherwise}
\end{cases} \]

\[b_{ijk} = \begin{cases}
1 & \text{if vehicle } k \text{ takes a break on edge } (i,j) \\
0 & \text{otherwise}
\end{cases} \]

\[y_{k} = \begin{cases}
1 & \text{if vehicle } k \text{ is used} \\
0 & \text{otherwise}
\end{cases} \]

Decision variables: continuous

\[S_{ik} = \text{start-of-service time of vehicle } k \text{ at point } i \]

\[Q_{ik}^{v} = \text{cumulative volume on vehicle } k \text{ at point } i \]

\[Q_{ik}^{w} = \text{cumulative weight on vehicle } k \text{ at point } i \]
The sets of origins O' and destinations O'' may be restricted for each individual vehicle k.

The set O'_k:
- degenerates to one point - the current depot of vehicle k
- or coincides with O' if we want to optimize the home depot of vehicle k

The set O''_k:
- degenerates to one point if vehicle k is required to return to its home depot
- or coincides with O'' for the purpose of dynamic destination depot assignment
Formulation

$$\min \ f = \sum_{k \in K} \left(\phi_k y_k + \beta_k \sum_{i \in N} \sum_{j \in N} \pi_{ij} x_{ijk} + \theta_k \left(\sum_{j \in O'_{k}''} S_{jk} - \sum_{i \in O'_{k}} S_{ik} \right) \right)$$

$$+ \psi \sum_{k \in K} \sum_{i \in O'_{k}} \sum_{j \in O'_{k}''} \left(\beta_k \pi_{ji} + \theta_k \tau_{jik} \right) z_{ijk}$$ (1)
Formulation

\[
\begin{align*}
\min \quad & f = \sum_{k \in K} \left(\phi_k y_k + \beta_k \sum_{i \in N} \sum_{j \in N} \pi_{ij} x_{ijk} + \theta_k \left(\sum_{j \in O_k''} S_{jk} - \sum_{i \in O_k'} S_{ik} \right) \right) \\
& \quad + \psi \sum_{k \in K} \sum_{i \in O_k'} \sum_{j \in O_k''} \left(\beta_k \pi_{ji} + \theta_j \tau_{jik} \right) z_{ijk} \\
\text{s.t.} \quad & \sum_{k \in K} \sum_{j \in DUP} x_{ijk} = 1, \quad \forall i \in P
\end{align*}
\]
Formulation

\[
\min f = \sum_{k \in K} \left(\phi_k y_k + \beta_k \sum_{i \in N} \sum_{j \in N} \pi_{ij} x_{ijk} + \theta_k \left(\sum_{j \in O_k''} S_{jk} - \sum_{i \in O_k'} S_{ik} \right) \right) \\
+ \psi \sum_{k \in K} \sum_{i \in O_k'} \sum_{j \in O_k''} \left(\beta_k \pi_{ji} + \theta_k \tau_{jik} \right) z_{ijk}
\]

s.t. \[
\sum_{k \in K} \sum_{j \in D \cup P} x_{ijk} = 1, \quad \forall i \in P
\]
\[
\sum_{i \in O_k'} \sum_{j \in N} x_{ijk} = y_k, \quad \forall k \in K
\]
\[
\sum_{i \in D} \sum_{j \in O_k''} x_{ijk} = y_k, \quad \forall k \in K
\]
Formulation

\[
\min f = \sum_{k \in K} \left(\phi_k y_k + \beta_k \sum_{i \in N} \sum_{j \in N} \pi_{ij} x_{ijk} + \theta_k \left(\sum_{j \in O_k'} S_{jk} - \sum_{i \in O_k'} S_{ik} \right) \right) \\
+ \psi \sum_{k \in K} \sum_{i \in O_k'} \sum_{j \in O_k''} \left(\beta_k \pi_{ji} + \theta_k \tau_{jik} \right) z_{ijk}
\]

\[\text{s.t.} \sum_{k \in K} \sum_{j \in D \cup P} x_{ijk} = 1, \quad \forall i \in P \]

\[\sum_{i \in O_k'} \sum_{j \in N} x_{ijk} = y_k, \quad \forall k \in K \]

\[\sum_{i \in D} \sum_{j \in O_k''} x_{ijk} = y_k, \quad \forall k \in K \]

\[\sum_{i \in N} x_{ijk} = 0, \quad \forall k \in K, j \in O' \cup (O'' \setminus O_k'') \]

\[\sum_{j \in N} x_{ijk} = 0, \quad \forall k \in K, i \in O'' \cup (O' \setminus O_k') \]
Formulation

\[
\begin{align*}
\min \quad & f = \sum_{k \in K} \left(\phi_k y_k + \beta_k \sum_{i \in N} \sum_{j \in N} \pi_{ij} x_{ijk} + \theta_k \left(\sum_{j \in O_k'} S_{jk} - \sum_{i \in O_k'} S_{ik} \right) \right) \\
& + \psi \sum_{k \in K} \sum_{i \in O_k'} \sum_{j \in O_k''} (\beta_k \pi_{ji} + \theta_k \tau_{jik}) z_{ijk} \\
\text{s.t.} \quad & \sum_{k \in K} \sum_{j \in D \cup P} x_{ijk} = 1, \quad \forall i \in P \tag{2} \\
& \sum_{i \in O_k'} \sum_{j \in N} x_{ijk} = y_k, \quad \forall k \in K \tag{3} \\
& \sum_{i \in D} \sum_{j \in O_k''} x_{ijk} = y_k, \quad \forall k \in K \tag{4} \\
& \sum_{i \in N} x_{ijk} = 0, \quad \forall k \in K, j \in O' \cup (O'' \setminus O_k'') \tag{5} \\
& \sum_{j \in N} x_{ijk} = 0, \quad \forall k \in K, i \in O'' \cup (O' \setminus O_k') \tag{6} \\
& \sum_{i \in N: i \neq j} x_{ijk} = \sum_{i \in N: i \neq j} x_{jik}, \quad \forall k \in K, j \in D \cup P \tag{7}
\end{align*}
\]
s.t. \[\sum_{m \in P} x_{imk} + \sum_{m \in D} x_{mjk} - 1 \leq z_{ijk}, \quad \forall k \in K, i \in O_k', j \in O_k'' \] (8)
Formulation

\[\sum_{m \in P} x_{imk} + \sum_{m \in D} x_{mjk} - 1 \leq z_{ijk}, \quad \forall k \in K, i \in O'_k, j \in O''_k \]

(8)

\[x_{ijk} \leq \alpha_{ijk}, \quad \forall k \in K, i \in O'_k \cup P \cup D, j \in P \cup D \cup O''_k \]

(9)
Formulation

s.t. \[\sum_{m \in P} x_{imk} + \sum_{m \in D} x_{mjk} - 1 \leq z_{ijk}, \quad \forall k \in K, i \in O'_k, j \in O''_k \] (8)

\[x_{ijk} \leq \alpha_{ijk}, \quad \forall k \in K, i \in O'_k \cup P \cup D, j \in P \cup D \cup O''_k \] (9)

\[\rho_i^v \leq Q_{ik}^v \leq \Omega_k^v, \quad \forall k \in K, i \in P \] (10)

\[\rho_i^w \leq Q_{ik}^w \leq \Omega_k^w, \quad \forall k \in K, i \in P \] (11)

\[Q_{ik}^v = 0, \quad \forall k \in K, i \in N \setminus P \] (12)

\[Q_{ik}^w = 0, \quad \forall k \in K, i \in N \setminus P \] (13)

\[Q_{ik}^v + \rho_j^v \leq Q_{jk}^v + \Omega_k^v \left(1 - x_{ijk} \right), \quad \forall k \in K, i \in O'_k \cup P \cup D, j \in P \] (14)

\[Q_{ik}^w + \rho_j^w \leq Q_{jk}^w + \Omega_k^w \left(1 - x_{ijk} \right), \quad \forall k \in K, i \in O'_k \cup P \cup D, j \in P \] (15)
Vehicle Routing

Formulation

\[
\text{s.t. } \sum_{m \in P} x_{imk} + \sum_{m \in D} x_{mjk} - 1 \leq z_{ijk}, \quad \forall k \in K, i \in O'_k, j \in O''_k
\] (8)

\[
x_{ijk} \leq \alpha_{ijk}, \quad \forall k \in K, i \in O'_k \cup P \cup D, j \in P \cup D \cup O''_k
\] (9)

\[
\rho_i^v \leq Q_{ik}^v \leq \Omega_k^v, \quad \forall k \in K, i \in P
\] (10)

\[
\rho_i^w \leq Q_{ik}^w \leq \Omega_k^w, \quad \forall k \in K, i \in P
\] (11)

\[Q_{ik}^v = 0, \quad \forall k \in K, i \in N \setminus P \] (12)

\[Q_{ik}^w = 0, \quad \forall k \in K, i \in N \setminus P \] (13)

\[
Q_{ik}^v + \rho_j^v \leq Q_{jk}^v + \Omega_k^v (1 - x_{ijk}), \quad \forall k \in K, i \in O'_k \cup P \cup D, j \in P
\] (14)

\[
Q_{ik}^w + \rho_j^w \leq Q_{jk}^w + \Omega_k^w (1 - x_{ijk}), \quad \forall k \in K, i \in O'_k \cup P \cup D, j \in P
\] (15)

\[
S_{ik} + \varepsilon_i + \delta b_{ijk} \leq S_{jk} + M(1 - x_{ijk}), \quad \forall k \in K, i \in O'_k \cup P \cup D, j \in P \cup D \cup O''_k
\] (16)

\[
\lambda_i \sum_{j \in N} x_{ijk} \leq S_{ik}, \quad \forall k \in K, i \in O'_k \cup P \cup D
\] (17)

\[
S_{jk} \leq \mu_j \sum_{i \in N} x_{ijk}, \quad \forall k \in K, j \in P \cup D \cup O''_k
\] (18)

\[
0 \leq \sum_{j \in O''_k} S_{jk} - \sum_{i \in O'_k} S_{ik} \leq H, \quad \forall k \in K
\] (19)
Formulation

\[
\text{s.t. } \left(S_{ik} - \sum_{m \in O'_k} S_{mk} \right) + \varepsilon_i - \eta \leq M \left(1 - b_{ijk} \right), \quad \forall k \in K, i \in O'_k \cup P \cup D, j \in P \cup D \cup O''_k
\]

\[
\eta - \left(S_{jk} - \sum_{m \in O'_k} S_{mk} \right) \leq M \left(1 - b_{ijk} \right), \quad \forall k \in K, i \in O'_k \cup P \cup D, j \in P \cup D \cup O''_k
\]

\[
b_{ijk} \leq x_{ijk}, \quad \forall k \in K, i, j \in N
\]

\[
\left(\sum_{j \in O''_k} S_{jk} - \sum_{i \in O'_k} S_{ik} \right) - \eta \leq (H - \eta) \sum_{i \in N} \sum_{j \in N} b_{ijk}, \quad \forall k \in K
\]
Formulation

s.t. \[
\left(S_{ik} - \sum_{m \in O_k'} S_{mk} \right) + \varepsilon_i - \eta \leq M \left(1 - b_{ijk} \right), \quad \forall k \in K, i \in O_k' \cup P \cup D, j \in P \cup D \cup O_k'' \quad (20)
\]

\[
\eta - \left(S_{jk} - \sum_{m \in O_k'} S_{mk} \right) \leq M \left(1 - b_{ijk} \right), \quad \forall k \in K, i \in O_k' \cup P \cup D, j \in P \cup D \cup O_k'' \quad (21)
\]

\[b_{ijk} \leq x_{ijk}, \quad \forall k \in K, i, j \in N \quad (22)\]

\[
\left(\sum_{j \in O_k''} S_{jk} - \sum_{i \in O_k'} S_{ik} \right) - \eta \leq (H - \eta) \sum_{i \in N} \sum_{j \in N} b_{ijk}, \quad \forall k \in K \quad (23)
\]

\[x_{ijk}, b_{ijk}, y_k \in \{0, 1\}, \quad \forall k \in K, i, j \in N \quad (24)\]

\[z_{ijk} \in \{0, 1\}, \quad \forall k \in K, i \in O', j \in O'' \quad (25)\]

\[Q_{ik}^x, Q_{ik}^w, S_{ik} \geq 0, \quad \forall k \in K, i \in N \quad (26)\]
Solution methodology: Exact approach

- We strengthen the formulation with variable fixing and valid inequalities

 Impossible traversals:
 \[x_{iik} = 0, \quad \forall k \in K, \, i \in N \]
 \[x_{ijk} = 0, \quad \forall k \in K, \, i \in O', \, j \in D \cup O'' \]
 \[x_{ijk} = 0, \quad \forall k \in K, \, i \in P, \, j \in O'' \]
 \[x_{ijk} = 0, \quad \forall k \in K, \, i \in D, \, j \in D: \, i \neq j \]

 Time-window infeasible traversals:
 \[x_{ijk} = 0, \quad \forall k \in K, \, i \in O'_k \cup P \cup D, \, j \in P \cup D \cup O''_k: \, \lambda_i + \varepsilon_i + \tau_{ijk} > \mu_j \]

 Lower bound on total time:
 \[\sum_{j \in O''_k} S_{jk} - \sum_{i \in O'_k} S_{ik} \geq \sum_{i \in N} \sum_{j \in N} x_{ijk}(\varepsilon_i + \tau_{ijk}), \quad \forall k \in K \]
Solution methodology: Exact approach

- Symmetry breaking for subsets K' of identical vehicles:

$$
\sum_{i \in P} \sum_{j \in P \cup D} \rho_i^v x_{ijk}^g \geq \sum_{i \in P} \sum_{j \in P \cup D} \rho_i^v x_{ijk}^g_{g+1}, \quad \forall g \in 1, \ldots, (|K'| - 1) \quad (33)
$$

- Symmetry breaking for replications of the same dump D':

$$
\sum_{j \in P} x_{ji}^g k \leq \sum_{j \in P} x_{ji}^g_{g+1} k, \quad \forall k \in K, g \in 1, \ldots, (|D'| - 1) \quad (34)
$$

- Bounds on dump visits:

$$
\sum_{i \in P} x_{ijk} \leq 1, \quad \forall k \in K, j \in D \quad (35)
$$

$$
\sum_{i \in D} \sum_{j \in P} x_{ijk} \leq \min (|D| - 1, |P|), \quad \forall k \in K \quad (36)
$$
Solution methodology: Heuristic approach

- To solve instances of realistic size, we developed a heuristic algorithm
- It constructs a feasible initial solution using an insertion procedure
- It improves the initial solution through local search admitting intermediate infeasibility with a dynamically evolving penalty
Solution methodology: Heuristic approach

- To solve instances of realistic size, we developed a heuristic algorithm
- It constructs a feasible initial solution using an insertion procedure
- It improves the initial solution through local search admitting intermediate infeasibility with a dynamically evolving penalty
- Periodically, we recover the best feasible solution because feasibility may be hard to restore
Solution methodology: Heuristic approach

- To solve instances of realistic size, we developed a heuristic algorithm.
- It constructs a feasible initial solution using an insertion procedure.
- It improves the initial solution through local search admitting intermediate infeasibility with a dynamically evolving penalty.
- Periodically, we recover the best feasible solution because feasibility may be hard to restore.
- Periodically, we also reassign dump visits and evaluate vehicle reassignments because the fleet is heterogeneous and fixed.
Solution methodology: Heuristic approach

Figure 2: Neighborhood operators

(a) Single-tour swap

(b) Single-tour reinsert

(c) Single-tour 2-opt

(d) Inter-tour swap

(e) Inter-tour reinsert

(f) Inter-tour 2-opt
Solution methodology: Heuristic approach

Define: K is the set of all available vehicles
Data: set of constructed tours $K' \in K$
Result: set of improved tours $K'' \in K$

```plaintext
setBanList();
setNeighborhood(); resetCurrentNeighbor();
for maxIter do
    for maxOpIter do
        N = generateNeighborSample();
        currentNeighbor = min(n){cost(n) | ∀ n ∈ N: cost(n) ∉ banList};
        updateBanList();
        if reached recoverFreq then
            reassignVehiclesRecoverCapacity();
            improveIndividually();
            updateBanList();
        end
        if reached maxOpNonImpIter then
            changeNeighborhood(); resetCurrentNeighbor();
            break;
        end
    end
    changeNeighborhood(); resetCurrentNeighbor();
    if reached maxNonImpIter then
        break;
    end
end
```

I. Markov (TRANSP-OR, EPFL)
Results

- We test the heuristic against the mathematical model on synthetic instances based on real underlying data
 - We are currently adapting the Schneider et al. (2014a) instances by adding site dependencies, a break period and a heterogeneous fixed fleet for the purpose of running additional tests

- Additionally, we test the heuristic on:
 - the Crevier et al. (2007) instances for the purpose of evaluating the benefit of flexible depot assignment,
 - and on state-of-practice data

- For each instance, the heuristic is run 10 times
Results: Synthetic instances (preliminary results)

Table 1: Synthetic instances

<table>
<thead>
<tr>
<th>Instance</th>
<th># of tours</th>
<th>Heuristic</th>
<th>Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Objective</td>
<td>MIP gap(%)</td>
</tr>
<tr>
<td>i1</td>
<td>1</td>
<td>214.85</td>
<td>0.00</td>
</tr>
<tr>
<td>i1_wtw</td>
<td>1</td>
<td>252.83</td>
<td>0.00</td>
</tr>
<tr>
<td>i1_ntw</td>
<td>2</td>
<td>394.82</td>
<td>0.00</td>
</tr>
<tr>
<td>i2</td>
<td>1</td>
<td>249.32</td>
<td>0.00</td>
</tr>
<tr>
<td>i2_wtw</td>
<td>1</td>
<td>257.58</td>
<td>0.00</td>
</tr>
<tr>
<td>i2_ntw</td>
<td>2</td>
<td>439.77</td>
<td>0.00</td>
</tr>
<tr>
<td>i3</td>
<td>1</td>
<td>240.13</td>
<td>0.00</td>
</tr>
<tr>
<td>i3_wtw</td>
<td>1</td>
<td>245.46</td>
<td>0.00</td>
</tr>
<tr>
<td>i3_ntw</td>
<td>2</td>
<td>444.59</td>
<td>0.00</td>
</tr>
<tr>
<td>i4</td>
<td>1</td>
<td>138.64</td>
<td>0.00</td>
</tr>
<tr>
<td>i4_wtw</td>
<td>1</td>
<td>140.20</td>
<td>0.00</td>
</tr>
<tr>
<td>i4_ntw</td>
<td>1</td>
<td>179.54</td>
<td>0.00</td>
</tr>
<tr>
<td>i5</td>
<td>1</td>
<td>220.77</td>
<td>0.00</td>
</tr>
<tr>
<td>i5_wtw</td>
<td>1</td>
<td>233.21</td>
<td>0.00</td>
</tr>
<tr>
<td>i5_ntw</td>
<td>2</td>
<td>405.62</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Results: Crevier et al. (2007) instances

- 22 instances, with a limited homogeneous fleet stationed at one depot
- All depots can act as intermediate facilities
- BKS by Hemmelmayr et al. (2013)
- We applied the LS heuristic to evaluate the benefits from flexible destination depot assignments

Keeping the home depot and optimizing the destination depot, we obtain:

- 0.37% average savings over 10 runs
- 1.77% savings in the best case

Optimizing the home depot and the destination depot, we obtain:

- 1.37% average savings over 10 runs
- 2.54% savings in the best case
Results: Crevier et al. (2007) instances

- 22 instances, with a limited homogeneous fleet stationed at one depot
- All depots can act as intermediate facilities
- BKS by Hemmelmayr et al. (2013)
- We applied the LS heuristic to evaluate the benefits from flexible destination depot assignments

Keeping the home depot and optimizing the destination depot, we obtain:
- **0.37%** average savings over 10 runs
- **1.77%** savings in the best case
Results: Crevier et al. (2007) instances

- 22 instances, with a limited homogeneous fleet stationed at one depot
- All depots can act as intermediate facilities
- BKS by Hemmelmayr et al. (2013)
- We applied the LS heuristic to evaluate the benefits from flexible destination depot assignments

Keeping the home depot and optimizing the destination depot, we obtain:
- 0.37% average savings over 10 runs
- 1.77% savings in the best case

Optimizing the home depot and the destination depot, we obtain:
- 1.37% average savings over 10 runs
- 2.54% savings in the best case
Results: Comparison to the state of practice

- 35 tours planned by specialized software for the canton of Geneva
- 7 to 38 containers per tour, up to 4 dump visits per tour
- LS heuristic improves tours by 1.73% to 34.91%, on avg 14.75%
- Extrapolating annually, cost reductions of at least USD 300’000

Figure 3: Comparison to the state of practice (average of 10 runs per tour)
The literature on waste generation forecasting is abundant and varied (for a survey see Beigl et al., 2008).

Much of it is focused on city and regional level.
State of the Art

- The literature on waste generation forecasting is abundant and varied (for a survey see Beigl et al., 2008)

- Much of it is focused on city and regional level

- And a fairly small amount on the container (micro) level, e.g.:
 - Inventory levels in pharmacies (Nolz et al., 2011, 2014)
 - Recyclable materials from old cars (Krikke et al., 2008)
 - Charity donation banks (McLeod et al., 2013)
 - Waste container levels (Johansson, 2006; Faccio et al., 2011; Mes, 2012; Mes et al., 2014)
State of the Art

- The literature on waste generation forecasting is abundant and varied (for a survey see Beigl et al., 2008)
- Much of it is focused on city and regional level
- And a fairly small amount on the container (micro) level, e.g.:
 - Inventory levels in pharmacies (Nolz et al., 2011, 2014)
 - Recyclable materials from old cars (Krikke et al., 2008)
 - Charity donation banks (McLeod et al., 2013)
 - Waste container levels (Johansson, 2006; Faccio et al., 2011; Mes, 2012; Mes et al., 2014)

- Contribution:
 - Operational level forecasting rather than critical levels
 - Estimated and validated on real data, compared to most of the literature which uses simulated data
Methodology

Let \(n_{i,t,k} \) denote the number of deposits in container \(i \) at date \(t \) of size \(q_k \). We define the data generating process as follows:

\[
Q_{i,t}^* = \sum_{k=1}^{K} n_{i,t,k} q_k
\]

(37)

Let \(n_{i,t,k} \overset{iid}{\longrightarrow} \mathcal{P}(\lambda_{i,t,k}) \) with probability \(\pi_{i,t,k} \). Then we obtain:

\[
\mathbb{E}(Q_{i,t}^*) = \sum_{k=1}^{K} q_k \lambda_{i,t,k} \pi_{i,t,k}
\]

(38)

We minimize the sum of squared differences between observed and expected over all containers and dates:

\[
\min_{\lambda, \pi} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(Q_{i,t} - \sum_{k=1}^{K} q_k \lambda_{i,t,k} \pi_{i,t,k} \right)^2
\]

(39)

assuming strict exogeneity
Methodology

- Given vectors of covariates $x_{i,t}$ and $z_{i,t}$ and vectors of parameters β_k and γ_k, we define Poisson rates and logit-type probabilities:

$$
\lambda_{i,t,k}(\theta) = \exp\left(x_{i,t}^T \beta_k\right) \quad (40)
$$

$$
\pi_{i,t,k}(\theta) = \frac{\exp\left(z_{i,t}^T \gamma_k\right)}{\sum_{j=1}^{K} \exp\left(z_{i,t}^T \gamma_j\right)} \quad (41)
$$

- Then, in compact form, the minimization problem writes as:

$$
\min_{\theta \in \Theta} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(Q_{i,t} - \sum_{k=1}^{K} \frac{\exp\left(x_{i,t}^T \beta_k + z_{i,t}^T \gamma_k + \ln(q_k)\right)}{\sum_{j=1}^{K} \exp\left(z_{i,t}^T \gamma_j\right)}\right)^2 \quad (42)
$$

- $\Theta := (\beta_k, \gamma_k : \forall k)$, and $\gamma_{k^*} = 0$ for one arbitrarily chosen k^*

- We will refer to this minimization problem as the mixture model
Methodology

- In case of only one deposit quantity, it degenerates to a pseudo-count data process:

\[
\min_{\theta \in \Theta} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(Q_{i,t} - \exp \left(x_{i,t}^T \beta + \ln(q) \right) \right)^2 \tag{43}
\]

- We will refer to this minimization problem as the *simple model*.
Methodology

- Using new sets of covariates $\dot{x}_{i,t}$ and $\dot{z}_{i,t}$, and the estimates $\hat{\beta}_k$ and $\hat{\gamma}_k$, we can generate a forecast as follows:

$$\dot{Q}_{i,t} = \sum_{k=1}^{K} \frac{\exp (\dot{x}_{i,t}^T \hat{\beta}_k + \dot{z}_{i,t}^T \hat{\gamma}_k + \ln (q_k))}{\sum_{j=1}^{K} \exp (\dot{z}_{i,t}^T \hat{\gamma}_j)}$$ \hspace{1cm} (44)

- Given the operational nature of the problem, the covariates should be quick and easy to obtain.
- Examples include days of the week, months, weather data, holidays, etc...
Data

- 36 containers for PET in the canton of Geneva with capacity of 3040 or 3100 liters
- Balanced panel covering March to June, 2014 (122 days), which brings the total number of observations to 4392
Data

- 36 containers for PET in the canton of Geneva with capacity of 3040 or 3100 liters
- Balanced panel covering March to June, 2014 (122 days), which brings the total number of observations to 4392
- The final sample excludes unreliable level data (removed after visual inspection)
- Missing data is linearly interpolated for the values of $Q_{i,t}$
Seasonality pattern

- Waste generation exhibits strong weekly seasonality
- Peaks are observed during the weekends
- There also appear to be longer-term effects for months

Figure 4: Mean daily volume deposited in the containers
Demand Forecasting

Covariates

- Based on the above observations, we use the following covariates
- They are all used both for $x_{i,t}$ (rates) and $z_{i,t}$ (probabilities)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container fixed effect</td>
<td>dummy</td>
</tr>
<tr>
<td>Day of the week</td>
<td>dummy</td>
</tr>
<tr>
<td>Month</td>
<td>dummy</td>
</tr>
<tr>
<td>Minimum temperature in Celsius</td>
<td>continuous</td>
</tr>
<tr>
<td>Precipitation in mm</td>
<td>continuous</td>
</tr>
<tr>
<td>Pressure in hPa</td>
<td>continuous</td>
</tr>
<tr>
<td>Wind speed in kmph</td>
<td>continuous</td>
</tr>
</tbody>
</table>

Table 2: Table of covariates
Evaluating the fits

- Coefficient of determination
 \[R^2 = 1 - \frac{SS_{res}}{SS_{tot}} \]
 with higher values for a better model

- Akaike information criterion (AIC):
 \[AIC = \left(\frac{SS_{res}}{N} \right) \exp(2K/N) \]
 with lower values for a better model. The exponential penalizes model complexity

- SS_{res} is the residual sum of squares
- SS_{tot} is the total sum of squares
- K is the number of estimated parameters
- N is the number of observations
Estimation on full sample

- Mixture model: R^2 of 0.341 (AIC 52900) with 5L and 15L
- Simple model: R^2 of 0.300 (AIC 53700) with 10L

Table 3: Estimated coefficients of mixture model

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\beta}_1$ (5L)***</th>
<th>$\hat{\beta}_2$ (15L)***</th>
<th>$\hat{\gamma}_2$***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum temperature in Celsius</td>
<td>1461.356</td>
<td>0.022</td>
<td>-0.037</td>
</tr>
<tr>
<td>Precipitation in mm</td>
<td>-0.821</td>
<td>-0.009</td>
<td>0.018</td>
</tr>
<tr>
<td>Pressure in hPa</td>
<td>-13.724</td>
<td>-0.001</td>
<td>0.010</td>
</tr>
<tr>
<td>Wind speed in kmph</td>
<td>7.580</td>
<td>-0.004</td>
<td>0.020</td>
</tr>
<tr>
<td>Monday</td>
<td>402.235</td>
<td>2.166</td>
<td>-9.693</td>
</tr>
<tr>
<td>Tuesday</td>
<td>1908.233</td>
<td>2.293</td>
<td>-9.977</td>
</tr>
<tr>
<td>Wednesday</td>
<td>-844.662</td>
<td>1.432</td>
<td>0.202</td>
</tr>
<tr>
<td>Thursday</td>
<td>1937.385</td>
<td>1.198</td>
<td>1.453</td>
</tr>
<tr>
<td>Friday</td>
<td>1876.162</td>
<td>1.239</td>
<td>4.419</td>
</tr>
<tr>
<td>Saturday</td>
<td>-6981.339</td>
<td>1.358</td>
<td>4.723</td>
</tr>
<tr>
<td>Sunday</td>
<td>1831.715</td>
<td>1.905</td>
<td>2.832</td>
</tr>
<tr>
<td>March</td>
<td>-27.136</td>
<td>2.955</td>
<td>-1.453</td>
</tr>
<tr>
<td>April</td>
<td>1071.406</td>
<td>2.746</td>
<td>-1.532</td>
</tr>
<tr>
<td>May</td>
<td>1689.979</td>
<td>2.988</td>
<td>-1.603</td>
</tr>
<tr>
<td>June</td>
<td>-2604.520</td>
<td>2.901</td>
<td>-1.452</td>
</tr>
</tbody>
</table>
Validation

- 50 experiments
- The mixture and the simple model are estimated on a random sample of 90% of the panel
- They are validated on the remaining 10%

<table>
<thead>
<tr>
<th>Table 4: Mean R^2 for estimation and validation sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation</td>
</tr>
<tr>
<td>Validation</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Validation

Figure 5: Histograms for estimation and validation samples
Contents

1 Introduction
2 Vehicle Routing
3 Demand Forecasting
4 Conclusion
Conclusion

- At the moment, the forecasting model can produce future levels, for which the routing problem is solved.
- Future research will focus on:
 - more deposit sizes or a continuous deposit size distribution
 - integrating the forecasting model and the routing algorithm into an inventory routing problem (IRP)
Conclusion

- At the moment, the forecasting model can produce future levels, for which the routing problem is solved.

- Future research will focus on:
 - more deposit sizes or a continuous deposit size distribution
 - integrating the forecasting model and the routing algorithm into an inventory routing problem (IRP)

- The IRP will solve simultaneously the container selection problem based on forecast levels and the routing problem in a periodic framework.

- The increasing amount of available data will allow for more extensive testing and results.
Conclusion

Thank you.

Questions?

