Simulation and optimization in transportation: an overview

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

November 6, 2014
Outline

1. Simulation
2. Simulation-based optimization
3. Black box algorithms
4. Noise reduction
5. Open box algorithms
6. Conclusions
Transport policies

Complexity

- Transport systems are complex
- Many elements interact
- Presence of uncertainty
Transport policies

Causal effects

- Very important to identify the causal effects
- Failure to do so may generate wrong conclusions
Example: improving safety

Accidents in Kid City

- The mayor of Kid City has commissioned a consulting company
- Objective: assess the effectiveness of safety campaigns
- Before and after analysis
Example: improving safety

Accidents in Kid City
Example: improving safety

Accidents in Kid City:
Example: improving safety

Accidents in Kid City

[Image of a map with various buildings and labeled points]
Example: improving safety

Accidents in Kid City
Example: improving safety

Accidents in Kid City:
Example: improving safety

Conclusions

- The “Drive safely” signs have a significant impact on safety
- The number of accidents has been reduced by 57%, from 21 down to 9.
Example: improving safety

Two major flaws

- Causal effects are not modeled
- Simulation performed with only one draw
Simulation

the act of imitating the behavior of some situation or some process by means of something suitably analogous
Simulation: what it is not in engineering
Simulation

\[z = h(x, y, u) \]

- Control — \(u \)
- External input — \(y \)

Complex system — state \(x \)

Indicators — \(z \)
Simulation

\[Z = h(X, Y, U) + \varepsilon_z \]

- **Control** — \(u \)
- **External input** — \(y \)
- **Complex system** — state \(x \)
- **Indicators** — \(z \)

\(\varepsilon_x \), \(\varepsilon_y \), \(\varepsilon_u \), \(\varepsilon_z \)
Simulation

Propagation of uncertainty

\[Z = h(X, Y, U) + \varepsilon_z \]

- Given the distribution of \(X, Y, U \) and \(\varepsilon_z \)
- What is the distribution of \(Z \)?

Derivation of indicators

- Mean
- Variance
- Modes
- Quantiles
Sampling

- Draw realizations of X, Y, U, ε_z
- Call them x^r, y^r, u^r, ε^r_z
- For each r, compute

$$z^r = h(x^r, y^r, u^r) + \varepsilon^r_z$$

- z^r are draws from the random variable Z
Empirical distribution function

\[F_e(x) = \frac{1}{R} \# \{ z^r \leq x \}, \]

For any \(x \in \mathbb{R} \),

\[\mathbb{E}[F_e(x)] = F(x) \]

and

\[\text{var}(F_e(x)) = \frac{1}{R} F(x)(1 - F(x)). \]
Statistics

Indicators

- Mean: \(\mathbb{E}[Z] \approx \bar{Z}_R = \frac{1}{R} \sum_{r=1}^{R} z^r \)
- Variance: \(\text{Var}(Z) \approx \frac{1}{R} \sum_{r=1}^{R} (z^r - \bar{Z}_R)^2 \).
- Modes: based on the histogram
- Quantiles: sort and select

Important: there is more than the mean
The mean

The State of the drunk at his AVERAGE position is **ALIVE**

But the AVERAGE State of the drunk is **DEAD**

Savage et al. (2012)
Simulation

The mean

The flaw of averages

Savage et al. (2012)

\[\mathbb{E}[Z] = \mathbb{E}[h(X, Y, U) + \varepsilon_z] \neq h(\mathbb{E}[X], \mathbb{E}[Y], \mathbb{E}[U]) + \mathbb{E}[\varepsilon_z] \]

... except if \(h \) is linear.
There is more than the mean

Example

- Intersection with capacity 2000 veh/hour
- Traffic light: 30 sec green / 30 sec red
- Constant arrival rate: 2000 veh/hour during 30 minutes
- With 30% probability, capacity at 80%.
- Indicator: Average time spent by travelers
There is more than the mean
Simulation

Pitfalls of simulation

Few number of runs
- Run time is prohibitive
- Tempting to generate partial results rather than no result

Focus on the mean
- The mean is useful, but not sufficient.
- For complex distributions, it may be misleading.
- Intuition from normal distribution (mode = mean, symmetry) do not hold in general.
- Important to investigate the whole distribution.
- Simulation allows to do it easily.
Outline

1. Simulation
2. Simulation-based optimization
3. Black box algorithms
4. Noise reduction
5. Open box algorithms
6. Conclusions
Optimization

Assumptions

- U is deterministic.
- $S^R(Z)$ is the statistic of Z under interest (mean, quantile, etc.)
- R is the number of draws generated to obtain the statistics
- Distributions of X, Y and ε_Z are known.

Optimization problem

$$\min_u f(u) = S^R(Z) = S^R(h(X, Y, u) + \varepsilon_Z)$$

subject to

$$g(u) = 0.$$
Optimization problem

\[\min_u f(u) = S^R(Z) = S^R(h(X, Y, u) + \varepsilon_z) \]

subject to
\[g(u) = 0. \]

Difficulties
- \(R \) must be large, so calculating \(f \) is computationally intensive
- The derivatives of \(f \) are unavailable or very difficult to obtain
Traffic simulation

Parameters calibration

- X: state of traffic
- Y: observed link flows
- u: parameters of the simulator
- h: traffic simulator
- Z: total squared difference between modeled and observed flows
- $S^R(Z)$: mean squared error
Traffic simulation

Traffic light optimization

- X: state of traffic
- Y: OD matrices
- u: traffic light configuration
- h: traffic simulator
- Z: total travel time
- $S^R(Z)$: mean of total travel time Osorio and Bierlaire (2013)
- $S^R(Z)$: std. dev. of total travel time Chen et al. (2013)
Outline

1. Simulation
2. Simulation-based optimization
3. Black box algorithms
4. Noise reduction
5. Open box algorithms
6. Conclusions
Scenario based optimization

Method
- Identify a list of scenarios u_1, \ldots, u_N
- Compute $f(u_i)$ for each i

Comments
- Solution is feasible and realistic
- Limited computational effort
- No systematic investigation
- Relies only on the creativity of the analyst

"Of course, this is a worst case scenario."
Nonlinear programming

General approach
- $f(u) = S^R(h(X, Y, u) + \varepsilon_z)$ is a nonlinear function of u
- In general, it is continuous and differentiable
- As h is a computer program, the derivatives are not available

Methods
- Automatic differentiation Griewank (2000)
- Derivative-free optimization Conn et al. (2009)
- Direct search Lewis et al. (2000)
Automatic differentiation

Method

- A software is a sequence of a finite set of elementary operations
- Each of them is easy to differentiate
- Use chain rule to propagate

Derivative-free optimization

Method

- Build a model of the function using interpolation
 - Lagrange polynomials
 - Splines
 - Kriging
- Use a trust region framework to guarantee global convergence

Comments

- Convergence theory
- Numerical issues with interpolation
- Need for a large number of interpolation points
Direct search

Method
- Generate a sequence of simplices using geometrical transformations maintaining the simplex structure

Comments
- Some do not always converge (Nelder-Nead)
- Convergence may be slow
Heuristics

Neighborhood
- Simple modifications of u
- Feasible or infeasible

Local search
- Select a better neighbor
- Stop at a local optimum

Meta heuristics
- Escape from local optima
- Simulated annealing
- Variable neighborhood search
- and many others...
Outline

1. Simulation
2. Simulation-based optimization
3. Black box algorithms
4. Noise reduction
5. Open box algorithms
6. Conclusions
Example of simulation

Machine with 4 states wrt wear

- perfect condition,
- partially damaged,
- seriously damaged,
- completely useless.

Transition:

\[
\begin{pmatrix}
0.95 & 0.04 & 0.01 & 0.0 \\
0.0 & 0.90 & 0.05 & 0.05 \\
0.0 & 0.0 & 0.80 & 0.20 \\
1.0 & 0.0 & 0.0 & 0.0
\end{pmatrix}
\]
Noise reduction: $R = 100$
Noise reduction: \(R = 1000 \)
Noise reduction: $R = 10000$
Noise reduction methods

Adaptive Monte-Carlo

- R varies across iterations
- Small R in early iterations
- R increases as the algorithm converges

Bastin et al. (2006)
Noise reduction methods

Interpolation: true function
Noise reduction methods

Interpolation: simulated function
Noise reduction methods

 Least-square fitting: simulated function
Noise reduction methods

Least square fitting

- Interpolation model + adaptive Monte-Carlo
- Each iterate considered as a sample
- Regression is used instead of interpolation

Comments

- Originally for systems of nonlinear equations
- An update formula à la Broyden can be derived
- Appropriate for large-scale applications (2 millions variables)
Outline

1. Simulation
2. Simulation-based optimization
3. Black box algorithms
4. Noise reduction
5. Open box algorithms
6. Conclusions
Open box algorithms

What are we simulating?

- $h(\cdot)$ is a detailed description of our system
- We need simulation because it is complicated
- We open the box, and build a simpler representation of the system
Deterministic model

Congestion

- Queuing theory
- Closed form analytical equations
- Simplifying assumptions (e.g. stationarity)

Osorio and Bierlaire (2009)
Metamodel

\[m(u, x; \alpha, \beta, q) = \alpha T(u, x, q) + \phi(u, \beta) \]

- \(T(\cdot) \) analytical model
- \(\phi(\cdot) \) interpolation model
- \(u \) control (traffic lights)
- \(x \) state variables

Osorio and Bierlaire (2013)
Metamodel

\[m(u, x; \alpha, \beta, q) = \alpha T(u, x, q) + \phi(u, \beta) \]

- \(T(\cdot) \) analytical model
- \(\phi(\cdot) \) interpolation model
- \(u \) control (traffic lights)
- \(x \) state variables
- engineering
- mathematics
Metamodelling approach

Ongoing research

- **Large scale problems** Osorio and Chong (ta)
- **Fuel consumption** Osorio and Nanduri (ta)
- **Emissions** Osorio and Nanduri (2013)
Large scale problems

Simulated travel time (with 50 draws) Osorio and Chong (ta)

Initial signal plan

Optimized signal plan
Reliability

Simulated standard deviation (with 50 draws)chen et al. (2013)

Initial signal plan

Optimized signal plan
Outline

1. Simulation
2. Simulation-based optimization
3. Black box algorithms
4. Noise reduction
5. Open box algorithms
6. Conclusions
Summary

Simulation
- Number of draws
- Beyond the mean

Black box algorithms
- Scenarios
- Automatic differentiation
- Derivative-free
- Direct search
- Heuristics
- Noise reduction

Open box algorithms
- Deterministic engineering model
- Metamodel
Conclusion

Everything should be made as simple as possible, but no simpler

Albert Einstein
Bibliography I

Conclusions

Bibliography II

Bibliography III

