SNM: Stochastic Newton Method for Optimization of Discrete Choice Models

Gael Lederrey, Virginie Lurkin and Michel Bierlaire

Submitted at IEEE ITSC 2018

Optimization of Discrete Choice Models?

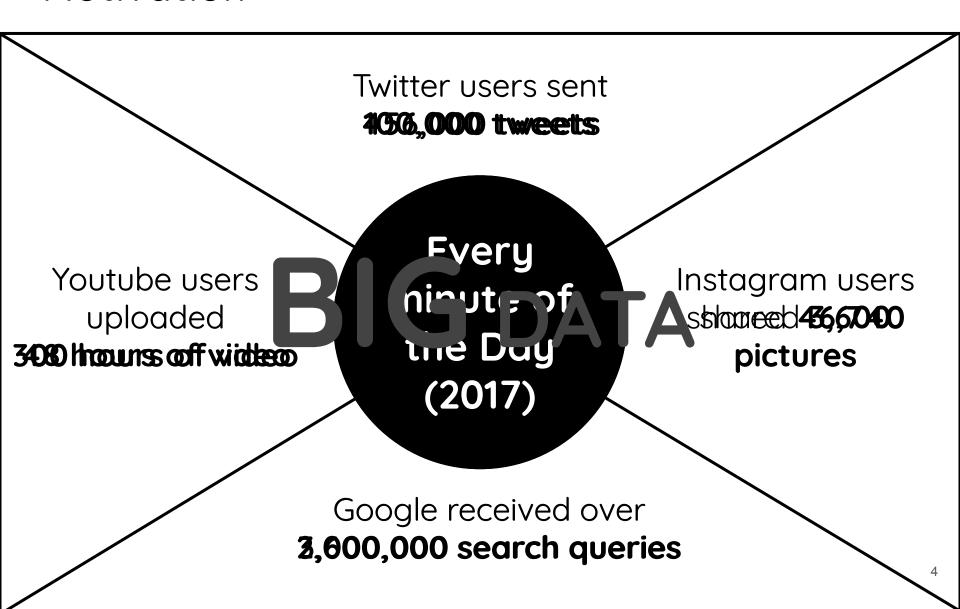
DCMs Softwares

• Larch (Newman *et ál.*, 2018)

MNLogit (statsmodel, Python)

Biogeme (Bierlaire, 2003)

Motivation



What can we do?

- Avoid using more data
 (Do we really need more data?)
- 2. Use more powerful computers (Do you know about Moore's law?)
- 3. Stop using DCMs and use ML (Basically, it's the same thing, no?)
- 4. Actually do something about DCMs

Where to get inspiration?

- Machine Learning is the obvious choice!
 - o Emerging since 1950's
 - Lot's of work on Optimization thanks to Neural Networks
 - They make use of data (data-driven)=> they know how to deal with data!

ML is actually "close" to DCMs

DCMs

V.S.

ML

Model-driven

Data-driven

Main goal:
Understand behavior

Main goal:

Prediction

Can also predict

Can also help to understand behavior

Likelihood as objective function

Likelihood (possible) as objective function

Optimization is very important!

Optimization is very important!

Optimization of ML - The Basics

GD

(Cauchy, 1847)

Specificities:

Gradient computed on all the data

Update step:

$$heta = heta - lpha \cdot
abla_{ heta} f(heta; x)$$

Where

 θ : Parameters

 α : Step size

f: Function, $f\in C^1(\mathbb{R}^{\mathrm{n}})$

x: Data, $x\in\mathbb{R}^n$

SGD

(???, 1940's)

Specificities:

Gradient computed on only one data

Update step:

$$heta = heta - lpha \cdot
abla_{ heta} f(heta; x_i)$$

Where

 θ : Parameters

lpha: Step size

f: Function, $f\in C^1(\mathbb{R}^{\mathrm{n}})$

x: Data, $x\in\mathbb{R}^n$

mbSGD

(???, 1940's)

Specificities:

Gradient computed on

a batch of data

Update step:

$$heta = heta - lpha \cdot
abla_{ heta} f(heta; x_{\sigma(k)})$$

Where

 θ : Parameters

 $\alpha :$ Step size

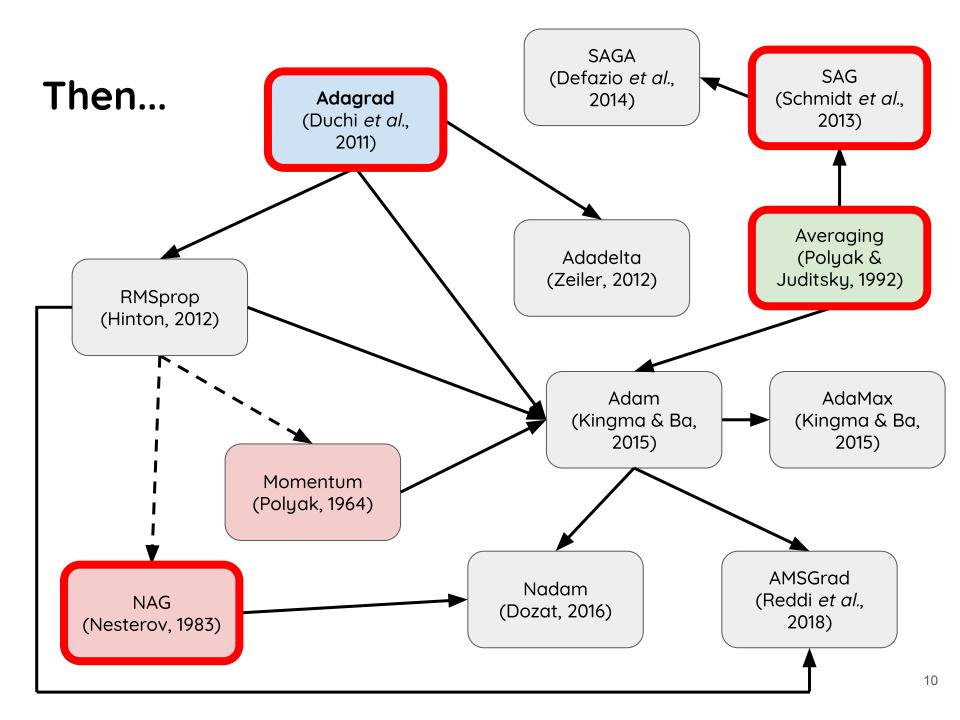
f: Function, $f\in C^1(\mathbb{R}^{\mathrm{n}})$

x: Data, $x\in\mathbb{R}^n$

 $\sigma(k)$: Choice of k indices

Challenges

- Choosing a proper step size
- Same step size applies to all parameter updates
- Avoid getting trapped in a local minima! (For non-convex functions)

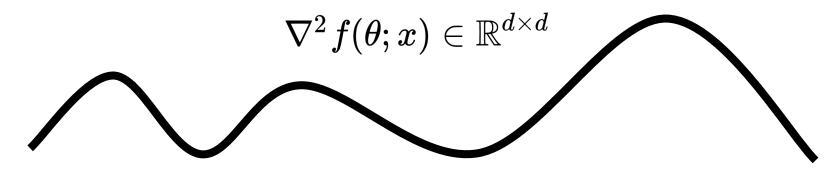


First-Order vs Second-Order

Gradient is pretty cheap to compute

$$abla_{ heta}f(heta;x)\in\mathbb{R}^d$$

Computation of Hessian is difficult/impossible

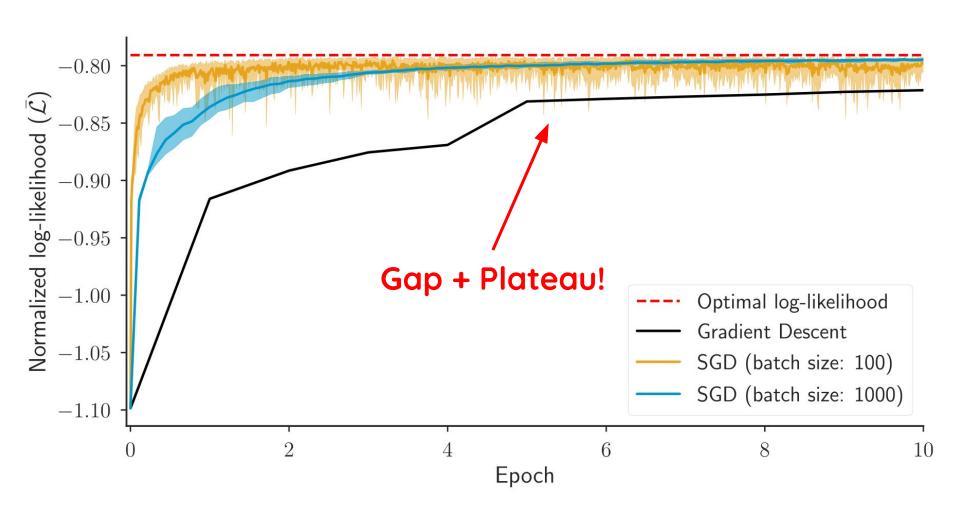


Recently, more work on quasi-Newton methods.

What am I doing here?

• Build a simple MNL (11 parameters) on *Swissmetro*

First-Order stochastic algorithms



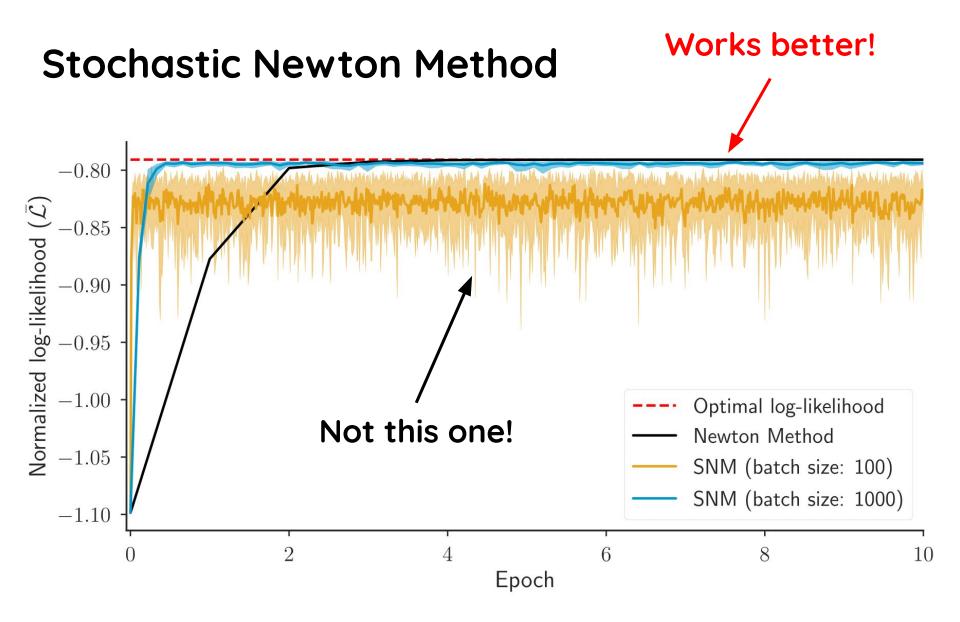
How to fix that?

Stochastic Newton Method

Make Newton step if possible. (Hessian positive/negative definite)

Otherwise ...

Make Gradient step



Conclusion

We need more data but we can't process them.

Works need to be done on the optimization side!

Promising early results on a simple algorithm

Future work

- Use the same iterative strategy to develop SNM
 => Variance reduction, Accelerated, etc.
- Add Conjugate Gradient and Trust-Region methods

Test on non-convex models (Nested logit models)

Thank you!

Article submitted at IEEE ITSC 2018 http://github.com/glederrey/IEEE2018-SNM

Code and article also available upon request: gael.lederrey@epfl.ch

Backup Slides

Main extensions of SGD

Momentum

$$egin{aligned}
u_t &= \gamma
u_{t-1} + lpha
abla_{ heta} f(heta; x) &
u_t &= \gamma
u_{t-1} + lpha
abla_{ heta} f(heta - \gamma
u_{t-1}; x) \
heta &= heta -
u_t \end{aligned}$$

Averaging Gradient (SAG)

$$heta = heta - rac{lpha}{n} \sum_{i=1}^n y_i^k$$
 with $y_i^k = egin{cases}
abla_{ heta} f(heta:x_i) & ext{if } i=i_k, \ y_i^{k-1} & ext{otherwise.} \end{cases}$

Adaptive Step size (Adagrad)

Gradient:
$$g_{t,i} =
abla_{ heta} f(heta_{t,i};x)$$
 Update Step: $heta_{t+1,i} = heta_{t,i} - rac{lpha}{\sqrt{G_{t,ii}+arepsilon}} \cdot g_{t,i}$

Where $G_t \in \mathbb{R}^{d \times d}$ is a diagonal matrix where each element Is the **sum of the squares** of the gradients up to t.

Model

$$egin{aligned} V_{ ext{Car}} &= ext{ASC}_{ ext{Car}} + eta_{ ext{TT,Car}} ext{TT}_{ ext{Car}} \ &+ eta_{ ext{C,Car}} ext{C}_{ ext{Car}} + eta_{ ext{Senior}} ext{1}_{ ext{Senior}} \end{aligned}$$

$$egin{aligned} V_{\mathrm{SM}} &= \mathrm{ASC}_{\mathrm{SM}} + eta_{\mathrm{TT,SM}} \, \mathrm{TT}_{\mathrm{SM}} \ &+ eta_{\mathrm{C,SM}} \, \mathrm{C}_{\mathrm{SM}} + eta_{\mathrm{HE}} \, \mathrm{HE}_{\mathrm{SM}} \ &+ eta_{\mathrm{Senior}} \, \mathbf{1}_{\mathrm{Senior}} \end{aligned}$$

$$V_{ ext{Train}} = ext{ASC}_{ ext{Train}} + eta_{ ext{TT,Train}} ext{TT}_{ ext{Train}} + eta_{ ext{C,Train}} ext{C}_{ ext{Train}} + eta_{ ext{HE}} ext{HE}_{ ext{Train}}$$
 Swissmetro (11 parameters)

Model trained with Biogeme

Log-likelihood: -7145.721

Name	Value	Std err	t-test	p-value
$\overline{\mathrm{ASC}_{\mathrm{Car}}}$	0	-	-	_
${\rm ASC_{SM}}$	$7.86 \cdot 10^{-1}$	$6.93 \cdot 10^{-2}$	11.35	$\boxed{0.00}$
${\rm ASC}_{\rm Train}$	$9.83 \cdot 10^{-1}$	$1.31\cdot 10^{-1}$	7.48	0.00
$eta_{\mathrm{TT,Car}}$	$-1.05 \cdot 10^{-2}$	$7.89 \cdot 10^{-4}$	-8.32	0.00
$eta_{\mathrm{TT,SM}}$	$-1.44 \cdot 10^{-2}$	$6.36 \cdot 10^{-4}$	-21.29	0.00
$eta_{\mathrm{TT,Train}}$	$-1.80 \cdot 10^{-2}$	$8.65 \cdot 10^{-4}$	-20.78	0.00
$eta_{ m C,Car}$	$-6.56 \cdot 10^{-3}$	$7.89 \cdot 10^{-4}$	-8.32	0.00
$eta_{ m C,SM}$	$-8.00 \cdot 10^{-3}$	$3.76 \cdot 10^{-4}$	-21.29	0.00
$eta_{ m C,Train}$	$-1.46 \cdot 10^{-2}$	$9.65 \cdot 10^{-4}$	-15.09	0.00
$eta_{ m Senior}$	-1.06	$1.16 \cdot 10^{-1}$	-9.11	0.00
$eta_{ m HE}$	$-6.88 \cdot 10^{-3}$	$1.03\cdot10^{-3}$	-6.69	0.00

Stochastic Newton Method

```
Algorithm 1 Stochastic Newton Method (SNM)
Input: Starting parameter value (\theta_0), data (\mathcal{D}), function (f), gradient (\nabla f), Hessian (\nabla^2 f), number of epochs (n_{en}), batch
     size (n_{batch})
Output: Epochs (e), parameters (\theta), function values (f_v)
  1: function SNM
           (n_{\mathcal{D}}, m) = |\mathcal{D}|
                                                                                                                            ▶ Number of samples and parameters
  2:
          n_{iter} \leftarrow \lceil n_{ep} n_{\mathcal{D}} / n_{batch} \rceil
                                                                                                                                                 Number of iterations
  3:
          Initialize e, \theta and f_v. Set \theta[0] \leftarrow \theta_0
  4:
          for i = 0 \dots n_{iter} do
  5:
               e[i] \leftarrow i \cdot n_{batch}/n_{\mathcal{D}}

    Store the epoch

  6:
               f_{i}[i] \leftarrow f(\theta[i])
                                                                                                                                            ▶ Store the function value
  7:
               idx \leftarrow n_{batch} values from \mathcal{U}(0, n_{\mathcal{D}}) without replacement
  8:
               \operatorname{grad} \leftarrow \nabla f_{\operatorname{idx}}(\theta[i])
                                                                                                                             ▶ Gradient on the samples from idx
  9:
                                                                                                                              ▶ Hessian on the samples from idx
               hess \leftarrow \nabla^2 f_{idx}(\theta[i])
 10:
                if hess is non singular then
 11:
                     inv hess \leftarrow hess<sup>-1</sup>
 12:
                     step \leftarrow -grad \cdot inv\_hess
 13:
                else
 14:
                     step ← grad
 15:
                \alpha \leftarrow Backtracking Line Search with step on the subset of data with indices from idx
 16:
                \theta[i+1] \leftarrow \theta[i] + \alpha \cdot \text{step}
 17:
          e[n_{iter}] \leftarrow n_{iter} \cdot n_{batch}/n_{\mathcal{D}}
 18:
           f_v[n_{iter}] \leftarrow f(\theta[n_{iter}])
 19:
          return e, \theta and f_v
20:
```

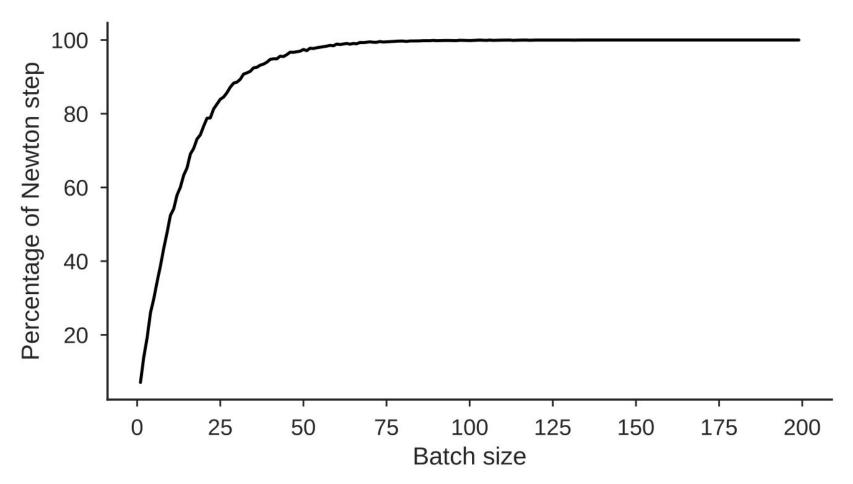
Armijo Backtracking Line Search

- ullet Let ${f P}$ be the search direction and $lpha_0$ the maximum step size
- ullet Define the local slope as $\, m = {f p}^T
 abla_{ heta} f(heta;x) \,$
- ullet Choose two parameters: $c \in (0,1)$ and $au \in (0,1)$

Algorithm:

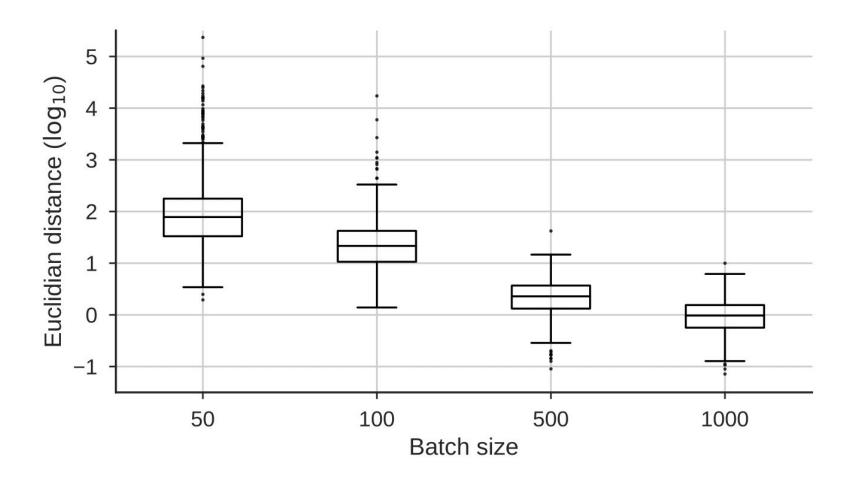
- 1. Set t=-cm
- 2. While $f(\theta;x) f(\theta + \alpha_j \mathbf{p}) \leq \alpha_j t$
- 3. $lpha_{j+1} = au lpha_j$
- 4. Return $lpha_j$

Not enough Newton steps?



Theoretical percentage of Newton step in function of the batch size

Bad Direction?



Euclidian distance between optimal parameters obtained on the full dataset and optimal parameters found on batches of the data

Future extensions

$$P(X,i|\mathcal{C}) = \prod_{n=1}^N P_n(x_n|eta_n, \xi) \ P_n(x_n|eta_n, \xi) = \sum_{r=1}^R P_n(x_n|eta_n, \xi_r) \ P_n(x_n|eta_n, \xi_r) = \prod_{t=1}^T P_n(x_n|eta_n, \xi_r, t)$$