
Synthetic population generation using GANs and expert knowledge

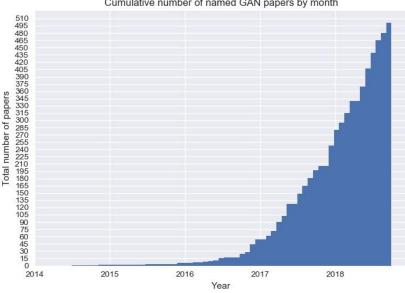
Gael Lederrey, Tim Hillel, and Michel Bierlaire

AUM2020: Online Global Workshop 28.01.2021

Outline

- Motivation
- State-of-the-art
- GANs
- Research perspective
- DATGAN
- Conclusion

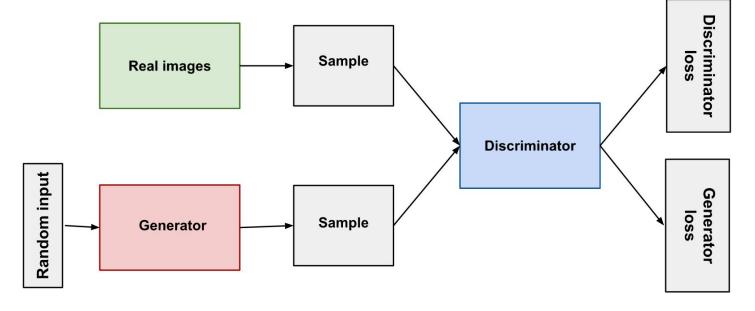
Motivation


- Agent-based simulation relies on accurate representations of a population.
- **But:** infeasible to obtain detailed socio-economic data for full population (privacy/security/cost!)
- => Agent-based simulations typically make use of synthetic population.

State-of-the-art for population synthesis

- -> 2010's: Iterative Proportional Fitting (IPF)
 - Beckman et al., 1996: First paper using IPF
 - Auld et al., 2009: Improvements on IPF
- 2010-2015: Monte Carlo Simulations
 - Farooq et al., 2013: MCMC simulation with Gibbs sampling
 - Casati et al., 2015: Hierarchical MCMC
- 2015-2019: Bayesian Networks
 - Sun and Erath, 2015: First to propose Bayesian Networks
 - Zhang et al., 2018: Bayesian Network as Social Network
- 2019->??: Deep Learning
 - Borysov et al., 2019: First use of a Variational AutoEncoder
 - Badu-Marfo et al., 2020: Composite Travel Generative Adversarial Network (CTGAN)

Data generation in Deep Learning


- 2014: Generative Adversarial Networks (GANs) Goodfellow et al., 2014 Ο
- 2014->2021: Many iterations of GANs for images
- 2018: GANs for tabular data are proposed
 - Xu et al., 2018 & 0 Park et al., 2018
- Limited work on data representativity ar Arora et al., 2017 & Liang, 2018 Ο

Generative Adversarial Networks (GANs)

- Idea: Train 2 NNs "simultaneously", one to generate images data and one to discriminate between fake and real.
- Basic architecture:

Generative Adversarial Networks (GANs)

Change of architecture

The Generator can change its architecture to be faster and more efficient.

Fool

60

30

Put the opponent in a state of confusion and gains point for the loss function.

weakness resistance

Train with real data30This technique gives a bonus of +10 to the next"Make a correct guess" attack

Make a correct guess 50

Loose its confusion status and gains points for the loss function.

weal	kness	resis	tance

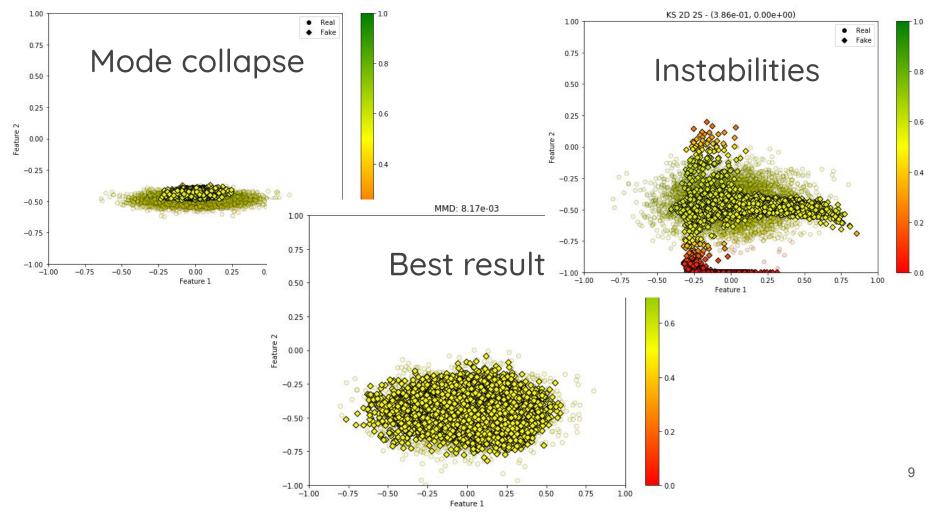
Second St.

retreat

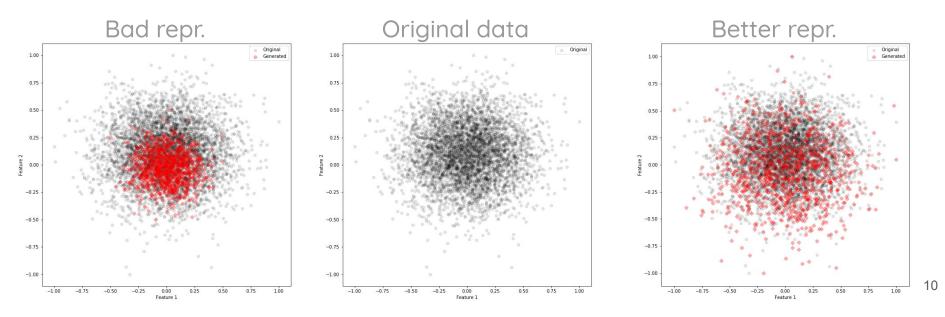
retreat

GANs - Early models

- Standard architectures for both NNs.
 - ANN in both cases
- First improvements made on
 - Loss function (Wasserstein GAN, Cramer GAN)
 - Training stability (WGAN-GP)
 - Coverage and Representativity (MMD-GAN)
- Successful results with images!



2017


Early models and tabular data

Standard GAN trained on 2D data => bad results!

What is "representativity" in data?

- Concept of representativity = generate new data that reflect the original distribution.
- A different from generating data that fool a discriminator!

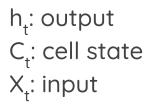
Research perspective

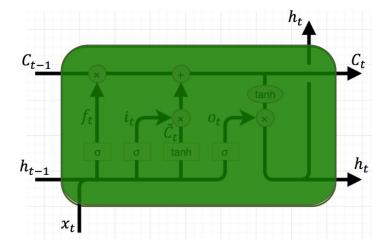
• Two parallel research directions:

Improvement of population synthesis

Develop new robust ML models for synthetic population generation

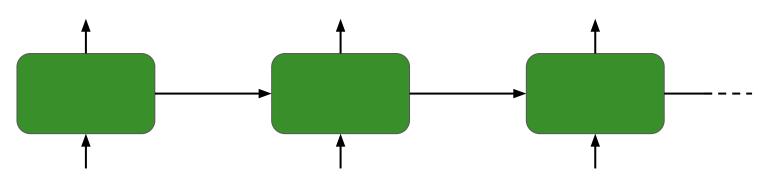
=> Current SoR: TGAN

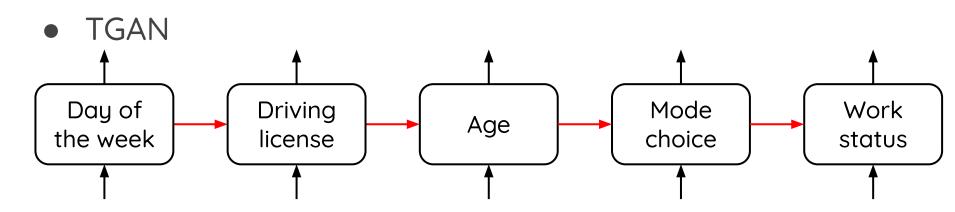

Representativity assessment


Develop new statistical method to better assess the model performance

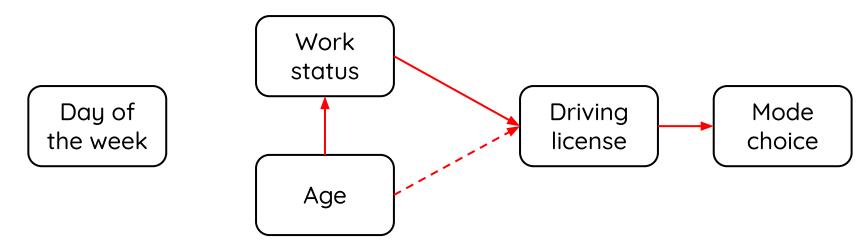
Current SoR: SRMSE Mueller and Axhausen, 2011

TGAN and flaws


- TGAN stands for Table GAN
 Xu et al., 2018
- Main idea:
 - Architecture for Generator = sequence of LSTM cells


TGAN and flaws

- TGAN stands for Table GAN
 Xu et al., 2018
- Main idea:
 - Architecture for Generator = sequence of LSTM cells



- Flaws:
 - No "specific" relations between the variables in the dataset
 - Selection of discrete values using arg max on predicted probabilities

DATGAN

• DATGAN (Directed Acyclic TGAN)

Current work-in-progress

- DATGAN is ~ trainable
- Problem: "How to add multiple inputs to an LSTM cell"
- Possible solutions?:
 - Concatenate inputs and cell states (<u>size</u>)
 - Use additional DeepLayers to reduce size (1 training)
 - Transform the current LSTM cell to accept multiple inputs
- Investigation is ongoing first analytical results due ASAP.

Conclusion and future work

- GANs are current state-of-the-art technique for population synthesis (outperforms previous approaches)
- Proposed directed acyclic graph structure addresses existing limitations of TGAN
- Future work:
 - DATGAN: Finalise implementation
 - Validation: Define more robust metrics for assessing aggregate representativity

Thank you!

Questions?

email: gael.lederrey@epfl.ch