Hybrid Simulator for Capturing Dynamics of Synthetic Population

Marija Kukic Salim Benchelabi Michel Bierlaire

STRC Monte Verità / Ascona, May 10 - 12, 2023

May 10, 2023

23rdSwiss Transport Research Conference

FP:

MK, SB, MB (EPFL)

Capturing Dynamics

May 10, 2023

1/25

- 2 Literature review
- 3 Methodology
- 4 Results: Case study of Switzerland
- 5) Conclusion and Future Work

イロト イポト イヨト イヨト

э

Synthetic population: What? Why?

Real Data

- High cost of data collection.
- Lack of representativity.
- Data privacy constraints.

Synthetic Data

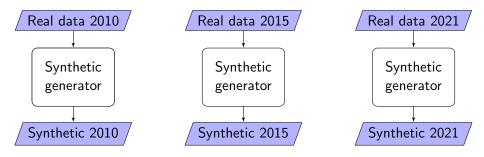
- Open source.
- Bias correction.
- Privacy preservation.

< □ > < □ > < □ > < □ > < □ > < □ >

Synthetic population: What? Why?

Real Data

- High cost of data collection.
- Lack of representativity.
- Data privacy constraints.


Synthetic Data

- Open source.
- Bias correction.
- Privacy preservation.

Synthetic Population in Transportation?

Generation algorithms: Statistical reconstruction, Combinatorial Optimization and Statistical learning

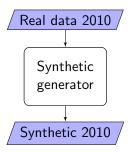
Synthetic population: Snapshot of the data

(日)

Problems: Independent re-generation?

- Complicated and costly re-generation.
- No use of the past data and all available data sources.
- Outdated synthetic population.

Population evolves over time = **Capturing Dynamics** How to capture dynamics? => **Projection of generated sample**


2 Literature review

- 3 Methodology
- 4 Results: Case study of Switzerland
- 5) Conclusion and Future Work

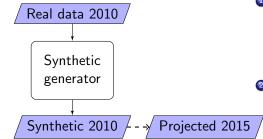
イロト イポト イヨト イヨト

э

Literature review: Generation and Projection

Step 1: Generation

Statistical Reconstruction


[Fatmi and Habib, 2017, Prédhumeau and Manley, 2023]

Combinatorial Optimization [Namazi-Rad et al., 2014]

Statistical learning?

< □ > < □ > < □ > < □ > < □ > < □ >

Literature review: Generation and Projection

Dynamic Projection Simulate life events [Namazi-Rad et al., 2014, Fatmi and Habib, 2017] Re-sampling

Adjust marginals [Prédhumeau and Manley, 2023]

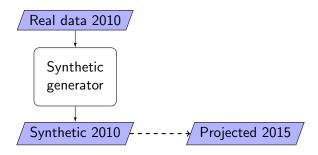
Step 1: Generation Step 2: Projection

- 4 回 ト 4 ヨ ト 4 ヨ ト

Literature review: Gaps

Problems of projection

- Arbitrarily chosen choice of the generators.
- Limited number of considered attributes.
- Lack of validation.


Dynamic projection

- Propagation of the generation bias and errors.
- Increase of the error over time.
- Not robust to the unusual events.

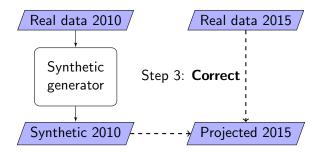
Re-sampling

Lack of heterogenity.

Contribution: Hybrid Simulator for Capturing Dynamics

Step 1: Generation Step 2: Projection

Model-based approach


MK,	SB,	MB ((EPFL)	
-----	-----	------	--------	--

Capturing Dynamics

May 10, 2023

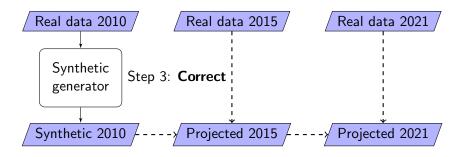
イロト 不得 ト イヨト イヨト

Contribution: Hybrid Simulator for Capturing Dynamics

Step 1: Generation Step 2: Projection

Model-based and Data-driven approach

MK, SB, MB (EPFL)


Capturing Dynamics

May 10, 2023

イロト 不得 ト イヨト イヨト

12 / 25

Contribution: Hybrid Simulator for Capturing Dynamics

Step 1: Generation Step 2: Projection Step 4: Validation

Model-based and Data-driven approach

MK, SB, MB (EPFL)

Capturing Dynamics

May 10, 2023

< □ > < □ > < □ > < □ > < □ > < □ >

Literature review

3 Methodology

4 Results: Case study of Switzerland

э

14 / 25

イロト イポト イヨト イヨト

Hybrid Simulator for Capturing Dynamics

Step 1: Generation

Markov Chain Monte Carlo Simulation [Kukic and Bierlaire, 2023] Synthetic individuals $X = (X_{age}, X_{emp}, X_{gender})$ Bootstrap and convergence monitoring

Step 2: Dynamic projection

When disaggregated data are not available. Simulate events: birth, death and migration. Simulate impact on age, gender and employment.

MK, SB, MB	(EPFL)
------------	--------

- 4 回 ト - 4 三 ト

Hybrid Simulator for Capturing Dynamics

Step 3: Re-sampling

When disaggregated data are available.

Compare age marginals with real data.

Add or delete individuals to achieve desired fit.

Step 4: Validation

Compare marginal and sub-distributions with real data. Statistics (e.g., SRMSE) and Visualization.

< 同 > < 三 > < 三 >

- 2 Literature review
- 3 Methodology
- 4 Results: Case study of Switzerland
 - Conclusion and Future Work

э

イロト イポト イヨト イヨト

Generation and validation of synthetic sample - 2010

Reference data: weighted MTMC 2010, 2015, 2021 [OFS]

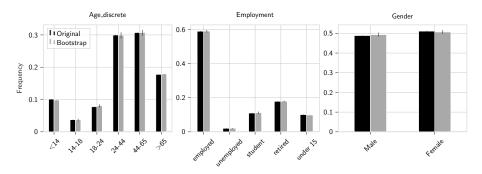


Figure: The comparison of the marginal distributions between synthetic and real sample from 2010

MK, SB, MB (E	EPFL)
---------------	-------

< A IN

→ ∃ →

Dynamic Projection (2010 - 2014) and Re-sampling (2015)

Rates on birth, death and migration [OFS]

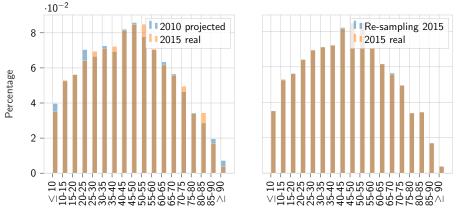


Figure: Comparison with real data 2015 (Left - Projection results; Right - Re-sampling results)

MK, SB, MB (EPFL)

Capturing Dynamics

May 10, 2023

< □ > < □ > < □ > < □ > < □ > < □ >

Comparison of projection and hybrid approach - 2021

	Age discrete	Employment	Gender	Average All attributes
Hybrid approach 2010 - 2021	0.073	0.052	0.006	0.044
Projection 2010 - 2021	0.082	0.071	0.006	0.053

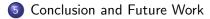
Table: SRMSE of projected samples against real sample 2021

MK, SB, MB (EPFL)

Comparison of projection and hybrid approach - 2021

	Age discrete	Employment	Gender	Average All attributes
Projection 2015 to 2021	0.057	0.037	0.004	0.033
Hybrid approach 2010 - 2021	0.073	0.052	0.006	0.044
Projection 2010 - 2021	0.082	0.071	0.006	0.053

Table: SRMSE of projected samples against real sample 2021


MK, SB, MB (EPFL)

Motivation

Literature review

3 Methodology

4 Results: Case study of Switzerland

э

22 / 25

イロト イポト イヨト イヨト

Conclusion and Future Work

Summary

- Maintenance of synthetic samples without regenerating.
- Access to up-to-date data and making use of the past.
- Hybrid approach trade-off between accuracy and efficiency.

Independent generation VS. Hybrid approach

Number of attributes.

Availability of the real sample.

Re-sample other attributes than age.

Thank you :) Questions?

MK, SB, MB (EPFL)

Capturing Dynamics

May 10, 2023

イロン イ理 とくほとう ほんし

24 / 25

Bibliography

Fatmi, M. R. and Habib, M. A. (2017).

Baseline synthesis and microsimulation of life-stage transitions within an agent-based integrated urban model.

Kukic, M. and Bierlaire, M. (2023).

Divide-and-conquer one-step simulator for the generation of synthetic households.

- Nam
 - Namazi-Rad, M.-R., Mokhtarian, P., and Perez, P. (2014).

Generating a dynamic synthetic population – using an age-structured two-sex model for household dynamics.

- Prédhumeau, M. and Manley, E. (2023).

A synthetic population for agent based modelling in Canada.