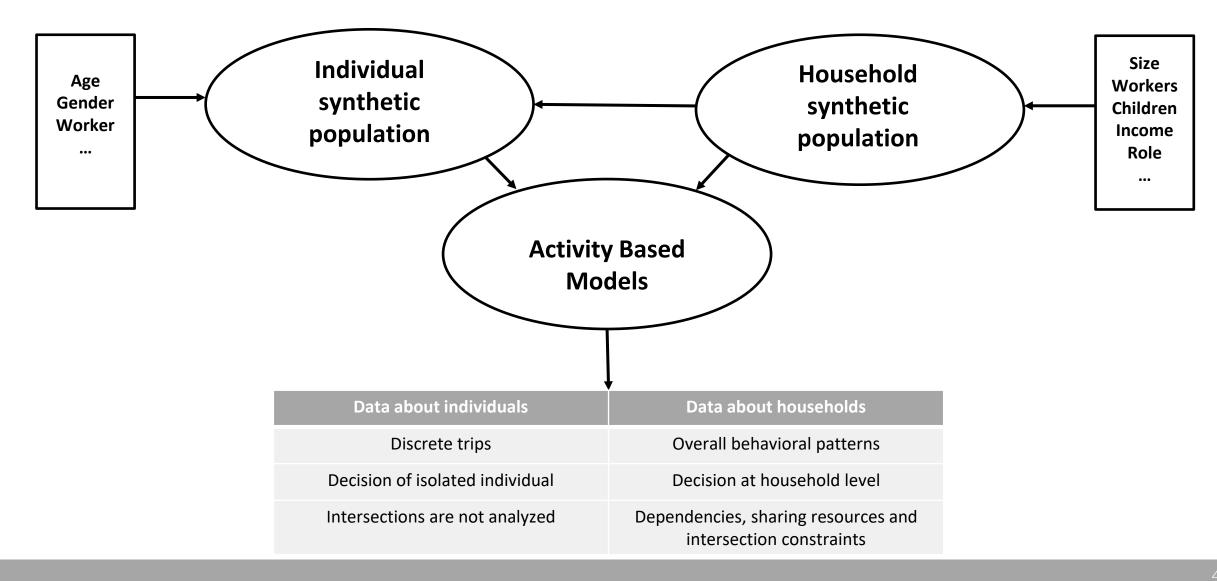


One-step simulator for synthetic household generation

Marija Kukic Supervisor: Michel Bierlaire

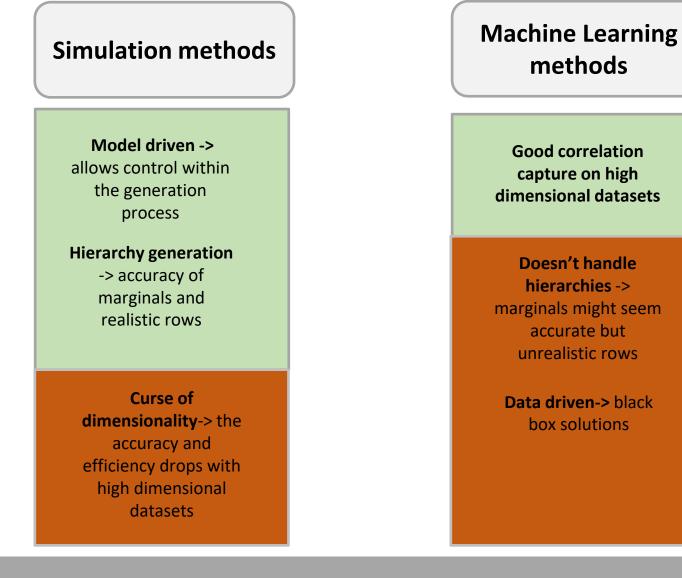
Outline


- Motivation
- Literature review
- Simulation approach for synthetic generation
- One-stage simulator for synthetic household generation
- Divide and conquer Gibbs Sampler
- Results and validation
- Conclusion

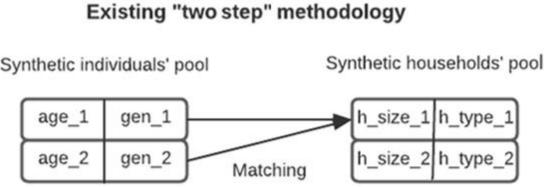
What are synthetic data and why do we need them?

- Data collections: surveys, census, mobile phone tracking...
- Why cannot we use those data?
 - High cost of data collection

 => reduce sample size
 => lack of representativity
 - Privacy preservation => data unavailability
- What is a solution? => Let's generate synthetic data!


Why do we need synthetic data in transportation?

Literature review: From synthetic individuals to synthetic households


	GENERATION OF INDIVIDUALS	GENERATION OF HOUSEHOLDS	ASSOCIATIONS BETWEEN INDIVIDUALS & HOUSHEOLDS
Iterative Proportional Fitting (IPF)	1996 <i>Beckman et al.</i> Creating synthetic baseline populations	Beckman et al. 2007 Creating synthetic Arentze et al.	
Simulation techniques (MCMC)	Simu	2014, Anderson et al., Associations Generation 2015, Casati et al., Hierarchical MCMC	
Machine Learning techniques	2014, Goodfellow et al. Generative Adversarial Network 2018, Xu et al. Tabular Generative Adversarial Networks 2020, Badu – Marfo et al., Composite Travel Generative Adversarial Networks 2022, Lederrey et al., DATGAN: Integrating expert knowledge into deep learning for synthetic tabular data		2022

From synthetic individuals to synthetic households

Gaps in the literature – Why do we need one-step simulator?

	METHODS	Exi Synthetic indiv
TWO – STAGE PROCESS	Hierarchical MCMC (hMCMC) Assuming independence between individuals	age_1 age_2 (hsize1, ag
ONE – STAGE PROCESS	One-step simulator for synthetic household generation	Pro h_size_1 h_ (hsize1, ag

(hsize1, age_1, gen_1, age_2, gen_2) = (2, 80, M, 8, M)

h_size_1	h_type_1	age_1	gen_1	age_2	gen_2
		• –	· _	• –	· -

(hsize1, age_1, gen_1, age_2, gen_2) = (2, 80, M, 78, F)

Research questions

One-step simulator for synthetic household generation

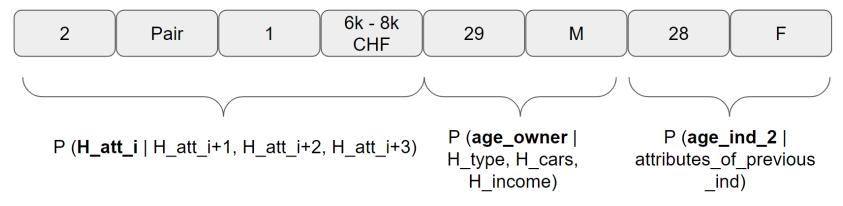
How to design a methodology for creation of synthetic households in **one – stage** process?

How much **control** we can embed into generation process compared to other existing methodologies?

How to deal with the "curse of dimensionality"?

Existing approach - iMCMC

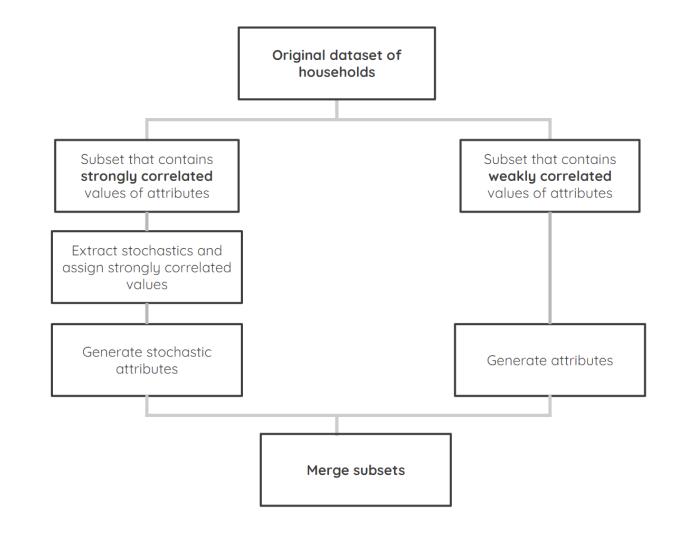
			Ge	nder		
Simulation based population synthesis:	π(A B)	Age	Male	Female	Total	Target
		0 to 16	11057	4069	15126	15012
 Markov Chain Monte Carlo process 		17 to 25	21228	8335	29563	29567
		26 to 55	6415	13762	20177	20234
		56 and above	11209	23925	35134	35187
Sampling methods:		Total	49909	49932		
		Target	50091	50155		
Gibbs Sampling		Total 0-25	32285	12404		
		Target 0–25	32144	12435	ļ.,	
Input preparation:						
	π(A,B,C,D)??					
1. Conditional distributions constructed from:						π(A,B,C,D)
Data			π(Δ)	B,C,D)		
Models	π(Α	(B,C,D)	()	5,0,07	1	(A,B,C,D) ₁ (A,B,C,D) ₂
Assumptions					<u>,</u>	(A,B,C,D) ₃
		A,B,D)	()		▶ !
		(A,C,D) (A,B,D) (2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	•	e –	π(B A,C,D)	!
Assumptions:					Ĭ	(A,B,C,D) _n
• Given A, B is uniform across C, D:		L	(0,8,	A ጋ)π		


 $\pi(A|B) = \pi(A|B,C,D)$

Contributions – Modeling part

Generalized approach:

H_Size	H_Type	H_Cars	H_Income	[Individuals]
				(-)


Specific example:

Contributions – Algorithmic part

- Curse of dimensionality breaks the algorithm by adding more dimensions
- Gibbs sampler gets stuck in highly correlated areas
 - long execution time
 - less accuracy by forcing "highly correlated" values and ignoring "weakly correlated" values
- Gibbs sampler completely fails if there is 1-1 correlation -> don't generate it, assume it, save time and be more accurate

Contributions – Divide and conquer simulator for synthetic household generation

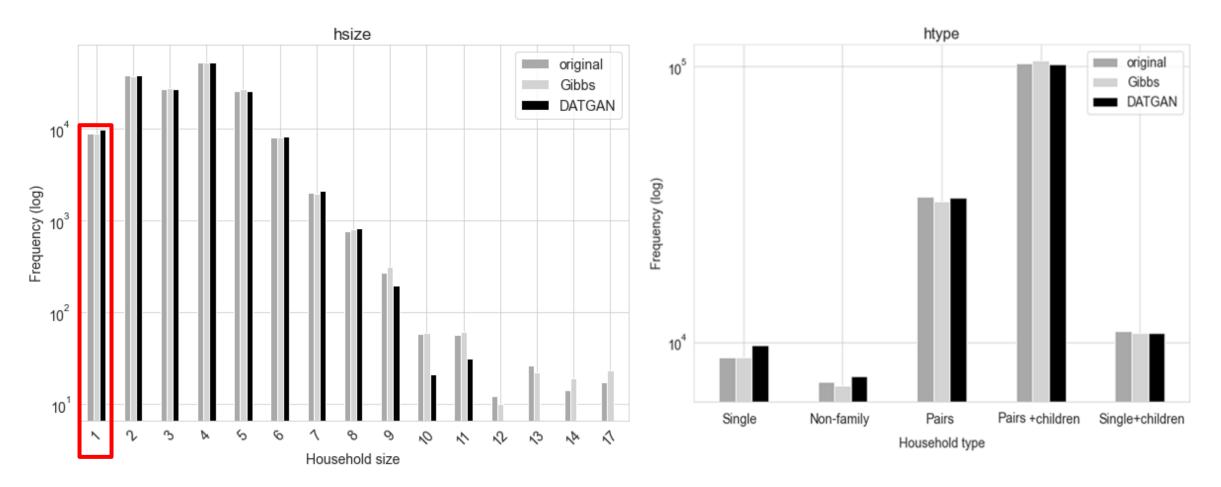
Case study: MTMC 2015 dataset

	SYNTHETIC DATASET
Number of observations	163843 individuals 57090 households
Area	Switzerland
Individual attributes	Age Gender
Household attributes	Household size Household type Number of cars in household Household income

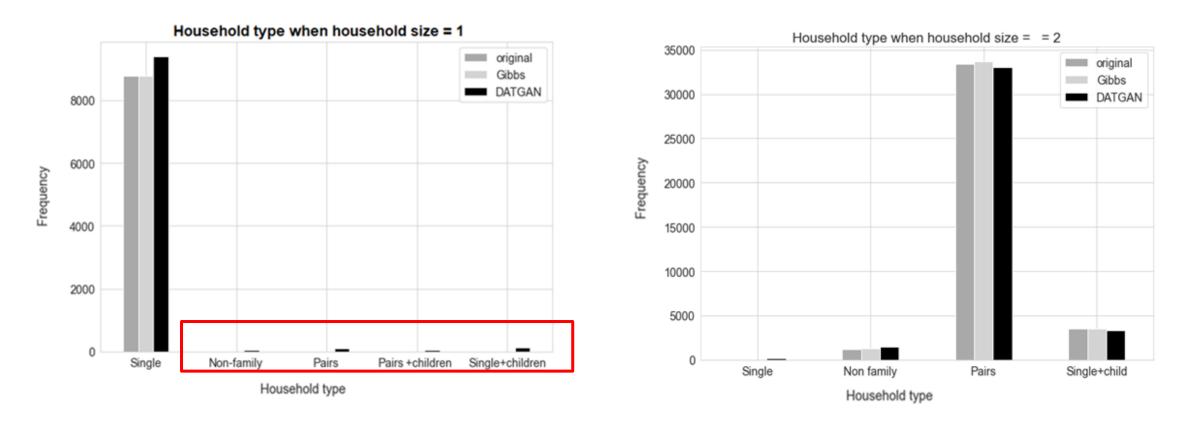
Case study: Validation methods

1. Visualization

- Marginals verify aggregated values
- Sub-distribution verify logic in the data

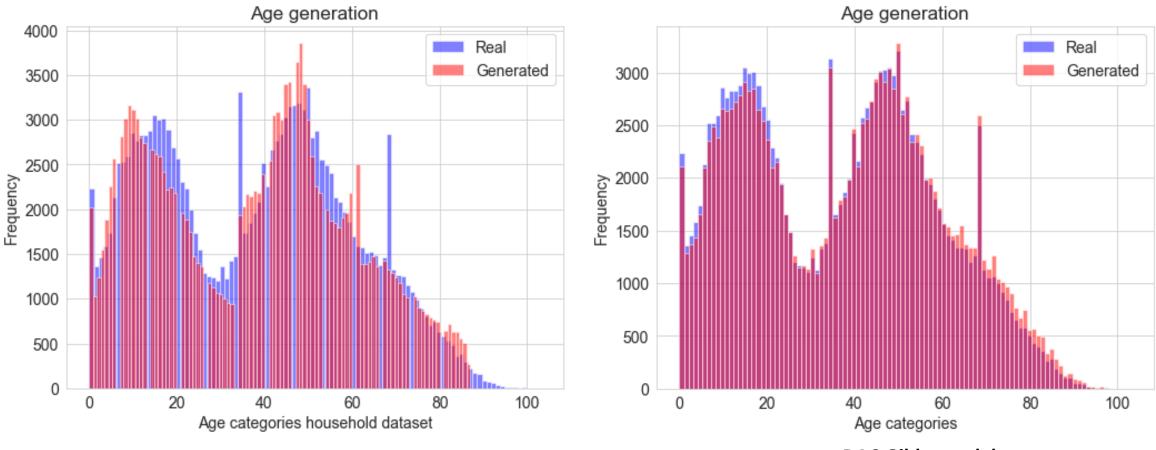

2. Statistics (Lederrey et al., 2022)

- **First level** columns are compared one by one separately (verify aggregated values)
- Second level columns are compared two by two (verify logic in the data)
- Calculating: MSE, RMSE, SRMSE, R^2, Pearson's correlation


Comparison is done between:

- original dataset
- One-stage Gibbs simulator
- DATGAN (Lederrey et al.,2022)

Results - Marginals


Results – Sub-distributions

Deterministic part

Stochastic part

Results – Marginals individuals continuous

DATGAN

DAC Gibbs model

Results – Divide and conquer

Conclusion & Future work

- Enforce rules -> control of generation process -> assume the correlations and let the model & data to do the rest
- Divide and conquer ->
 - Identify which values are causing strong correlation
 - isolate those areas
 - generate "strongly" and "weakly" correlated subsets in parallel
 - merge subsets
- Investigate convergence and influence on efficiency
- Revise all conditionals in order to simplify where needed

Thank you for your attention!

