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Motivation: Activity based models and synthetic population
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Individual synthetic 

population
Household synthetic 

population

Activity Based 
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Worker

…

Size

Workers

Children

Income

Role

…

Data about individuals Data about households

Discrete trips Overall behavioral patterns

Decision of isolated individual Decision at household level

Intersections are not analyzed Dependencies, sharing resources 

and intersection constraints



Literature review: From individuals to households
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Literature review: Synthetic population of households
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SAMPLE FREE SAMPLE BASED

TWO – STAGE PROCESS hMCMC X

ONE – STAGE PROCESS ? IPU



Literature review: Gaps and research questions
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GENERATION OF  

INDIVIDUALS

GENERATION 

OF 

HOUSEHOLDS
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HOUSHEOLDS

1. How to design sample free methodology for creation of synthetic households in 
one – stage process?

2. How much control we can embed into generation process?

3. Do the existing state-of-the-art methodologies generate a consistent synthetic 
population?



Simulation approach for synthetic population: existing approach
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Simulation based population synthesis:

• Markov Chain Monte Carlo process

Sampling methods:

• Gibbs Sampling

Input preparation:

1. Conditional distributions constructed from:

Data

Models

Assumptions

Assumptions:

• Given A, B is uniform across C,D



Simulation approach for synthetic population: contribution
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Synthetic households imputation: algorithm
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▪ Household types: single, couple, couple+children, single+children, non-family

▪ Types of attributes: deterministic and stochastically assigned



Case study: Multiday Activity Patterns and Schedules Owners
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Case study: MOBIS and census datasets
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MOBIS CENSUS

Number of observations 3700 agents

163845 agents

57090 households

Area and time Switzerland, 2019 Switzerland, 2015

Individual attributes

Age

Gender

Educational level

Employment

Income

Age

Gender

Educational level

Employment

Income

Household attributes

Household size

Owning car

Household size

Owning car

Household type

Household role

Number of children

Language

Synthetic dataset

Number of observations

10736 agents

3700 households

Area Switzerland

Individual attributes

Age

Gender

Educational level

Employment

Income

Household attributes

Household size

Owning car

Household type

Household role

Number of children

Language



Results: Before and after imputation – MOBIS & census characteristics
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Results: Consistency



Case study: Goodness of fit – representativity
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Results of generation – individuals and households

Standardized Root Mean Square Error

TGANs – individual dataset TGANs – household dataset



Case study: Validation of consistency and realism
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Case study: Is a consistency validated?
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Standardized Root Mean Square Error – Does it validate multivariate distributions?

AGE EMPLOYMENT

0 0

1 1

2 2

AGE EMPLOYMENT

0 2

1 0

2 1

Real dataset Synthetic dataset

SRMSE = 0 => Synthetic columns values fit perfectly  => Synthetic observations are unrealistic

Age : 0 – young, 1 – adult, 2 – old

Employment: 0 – school, 1 – employed, 2 - retired



Conclusion

17

▪ Control can be embedded into generation process – consistency preserved

▪ Curse of dimensionality with complete generation

Future work

▪ From synthetic imputation to synthetic generator of households in one step –

simulation or ML?

▪ Validation techniques for estimation of multivariate distributions



Q&A?
Thanks for your attention!



Appendix: Population Synthesis in transportation
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Case study: Comparison with TGANS

Generative adversarial network (GANs):

• Learn the probability distribution and draw samples from the distribution

Tabular generative adversarial network (TGANs)

• Synthetic data generator based on GANs for tabular data



Case study: construction of conditional distributions

21



22

Results: Discrete and stochastic generation of attributes
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Results of generation – individuals and households

Case study: 2015 census data – Comparison with TGANS
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Appendix
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Gibbs Sampling Algorithm Synthetic generator


