

Synthetic Population Generation: Hierarchies and Activities

Marija Kukic Michel Bierlaire 16.02.2023. Internal seminar - Annecy

Synthetic Data: What? Why?

• Data collections: surveys, census, mobile phone tracking...

Synthetic population in transportation

Research Axes: Generating Tabular data

Age	Gender	Driving licence	Size	Туре	Cars	Туре	Start	End
10	М	YES	1	1	1	Home	00:00	08:00
20	F	NO	2	2	2	Work	08:00	17:00

Literature Review: Gaps

Divide and Conquer One-Step Simulator for synthetic households generation

Why simulation?

Existing Methodology: Gibbs Sampler for Data Generation

 $\pi(A|B,C,D)$ $\pi(B|A,C,D)$ $\pi(C|A,B,D)$ $\pi(D|A,B,C)$

Input: Conditionals

- 1. Data
- 2. Models
- 3. Assumptions

Assumptions: Full conditionals can be simplified

 $\pi(A|B) = \pi(A|B,C,D)$

Methodology: From two-steps to one-step

Two-steps

One-step

Curse of dimensionality?

Shortcomings of Gibbs Sampler

"Curse of dimensionality"

- Highly correlated areas
- Total correlation
- Unavailability of full conditionals

Solution

- Divide & Conquer approach
- Simplification of conditionals

Methodology: One-step Divide & Conquer Gibbs Sampler (D&C)

Case study: MTMC 2015

163843 individuals, 57090 households

Household attributes:

- Household type
- Household size
- Number of cars
- Total number of driving licences

Comparisons:

- Two-steps VS. One-step
- One-step VS. One-step D&C
- One-step D&C VS. DATGAN

Individual attributes:

- Age
- Gender
- Marital status
- Employment status
- Driving licence

Case study: Validation Techniques

- 1. Visualization
 - Marginals verify aggregated
 - Sub-distribution verify logic in the data
- 2. Statistics (Lederrey et al., 2022)
 - First level one by one column
 - Second level two by two columns
 - Calculating: SRMSE, MSE, RMSE, R^2, Pearson's correlation
- 3. Convergence investigation
 - Potential reduction scale
 - Effective number of draws
 - Computational time

Results: two steps VS. one step

partners in couple

and child

First order	Second order	Computation time
One-step	One-step	One step 2x faster

Results: one step VS. one step D&C

First order	Second order	Computation time
One-step D&C	One-step D&C	One step D&C 2x faster

Results: one step D&C VS. DATGAN

First order	Second order
DATGAN	DATGAN

Conclusion

- Trade-off between accuracy and efficiency
- Enforce the constraints -> realistic observations
- Dealing with curse of dimensionality

Future work

- Decorrelation of the variables
- Can we generate different data types (e.g. activity sequence)?

Target output	START (input)	END (input)
home	00:00	08:00
travel	08:00	08:20
work	08:20	17:00
travel	17:00	17:15
home	17:15	24:00

Machine learning techniques for activity sequence generation

Existing methods

CTGAN

Application of SeqGAN for trip sequence generation

Existing methods - shortcomings

- 1. How to merge **socio-demographics** and **activities**?
- 2. Fixed length of activity sequence
- 3. One generated value for each point of sequence
- 4. Evaluation on the synthetic data

Case study - MTMC 2015

Preparation of input:

• Discretization 24 hours = 1440 min = **144** intervals * **10** minutes, **10 000** schedules

• 75% observations travel time < 15 min

Results

Results

Home activity lasts the whole day - unrealistic

Results

Filter out home activity as much as possible - 08:00 - 20:00

Activities that last the whole day still exist

Conclusion

- SeqGAN does not replicate sub-distributions of duration for different activity types
- Fixed length of activity sequence due to RNN structure

Future steps

- Adapt another seq2seq model (such as **Transformers**) for activity generation
- From text generation to discrete generation -> how to tokenize data?
- Is it possible to generate **multiple attributes** in sequence (e.g. activity type & duration?)

Thank you for your attention!

Appendix

Conditionals

1. Two step GS

- *P* (*hsize*|*age*_{owner}, *gender*_{owner})
- *P* (*age*_{owner}|*hsize*, *gender*_{owner})
- *P* (gender_{owner}|hsize, age_{owner})
- *P*(*age*_{spouse}|*hsize*, *age*_{owner}, *gender*_{owner}, *gender*_{spouse})
- *P*(gender_{spouse}|hsize, age_{owner}, gender_{owner}, age_{spouse})
- $P(age_{child}|hsize, age_{owner}, gender_{owner}, age_{spouse}, gender_{spouse}, gender_{child})$
- $P(gender_{child}|hsize, age_{owner}, gender_{owner}, age_{spouse}, gender_{spouse}, age_{child})$
- $P(age_{other}|hsize, age_{owner}, gender_{owner}, age_{spouse}, gender_{spouse}, age_{child}, gender_{child})$
- $P(gender_{other}|hsize, age_{owner}, gender_{owner}, age_{spouse}, gender_{spouse}, age_{child}, gender_{child})$

2. One step GS

- *P* (*htype*|*hsize*, *age*_{*owner*}, *age*_{*second*})
- P(hsize) from marginal
- *P* (*nbcars*|*htype*, *hsize*, *total number of licences*)
- $P(age_{owner}|htype, age_{second}, age_{third})$
- *P*(gender_{owner}|htype,gender_{second})
- *P*(marital_{owner}|htype, age_{owner}, marital_{second})
- *P*(*employment*_{owner}|*age*_{owner})
- *P* (*driving licence*_{owner}|*age*_{owner}, *nbcars*)

2. One step GS

- $P(age_{second}|htype, age_{owner}, age_{third})$
- *P* (gender_{second} | htype, gender_{owner})
- *P*(marital_{second}|htype, age_{second}, marital_{owner})
- *P* (*employment*_{second}|*age*_{second})
- *P*(*driving licence*_{second}|*age*_{second},*nbcars*)
- *P*(*age_{member}*|*htype*, *age_{previous individual*)}
- *P*(gender_{member}|htype)
- *P*(marital_{second}|htype, age_{member})
- $P(employment_{member}|age_{member})$
- *P* (*driving licence_{member}*|*age_{member}*, *nbcars*)

- 3. One step divide-and-conquer GS
 - P(hsize) from marginal for $hsize \leq 2$; otherwise P(hsize|htype)
 - Other conditionals the same as those in one step GS

• Previous approach -> One attribute conditional to all others

Generation of 4 household attributes:

- Household size (HS)
- Household type (HT)
- Number of cars (NC)
- Total number of driving licences (TD)

Full conditionals on full dataset:

- P(HS | HT, NC, TD)
- P(HT | HS, NC, TD)
- P(NC | HS, HT, TD)
- P(TD | HS, HT, TD)

	HS = 1	HS=2	HS >2
HT = Single	1	0	0
HT = Couple + children	0	P_1	P_4
HT = Non- family	0	P_2	P_5
HT = Single + children	0	P_3	P_6

Once it enters this vector it never goes out -> degenerative state

It fails to converge for the full dataset !

• Problems while using full conditionals

- in case of total correlation it's not possible to converge in reasonable time
- unavailability of full conditionals the more attributes we add, there are more unexisting categories while drawing
- long computational time to access high dimensional tables
- not all attributes have the same importance

"Curse of dimensionality"? => everyone is aware of the problem, but nobody is solving it

• Solution 1: Simplify conditionals

• **Example :** $P(HT | HS, NC, TD) \Leftrightarrow P(HT | HS)$

- **HT** is entirely defined by **HS**
- other attributes only increase complexity (longer execution time, same accuracy)
- fully stochastic process
- Expectations: accuracy will slightly drop but efficiency will increase

- Solution 2: Divide dataset based on the correlation between different categories of attributes
 - deterministically assign what is possible, keep the rest of the process stochastic
 - isolate highly correlated areas
 - apply different conditionals for different subsets

Expectations: accuracy and efficiency will increase

3 scenarios applied on strong (hs = 1 or hs = 2) and week subsets (hs>2):

- Full conditionals keeping the same conditionals as before for both subsets
- **Simplified conditionals** remove attributes from full conditionals that are considered as less meaningful from modeling point of view for both subsets
- Advanced conditionals use derived attributes from dataset that are more informative and revise conditionals based on the expert knowledge

	hs>2	hs=1	or hs=2	
Full	P(HS HT, NC, TD)	HS margi	inal distribution	
	P(HT HS, NC, TD)	HT determi	inistically wrt. HS	
	P(NC HS, HT, TD)	P(NC	HS, HT, TD)	
	P(TD HS, HT, NC)	P(TD	HS, HT, NC)	
Simplified	P(HS HT)	HS margi	HS marginal distribution	
	P(HT HS)	HT determi	HT deterministically wrt. HS	
	P(NC TD)	P(NC	P(NC HS, TD)	
	P(TD NC)	P(TD	P(TD HS, NC)	
Advanced	P(HS HT, TD)	HS = 1	HS = 2	
	P(HT HS)	HT = Single	HT from marginals	
	P(NC HS, TD)	P(NC TD)	P(NC TD)	
	P(TD HS,NC)	P(TD NC)	P(TD NC)	

Computational time:

1. generated_advanced_4d

- 2. generated_simple_4d
- 3. generated_full_4d

First order statistics:

- 1. generated_advanced_4d 7.80e-03 ± 4.36e-03
- 2. generated_simple_4d 1.11e-01 ± 1.15e-01
- 3. generated_full_4d 1.42e-01 ± 1.05e-01s

Second order statistics:

- 1. generated_advanced_4d 7.24e-02 ± 4.05e-02
- 2. generated_simple_4d 4.84e-01 ± 2.47e-01
- 3. generated_full_4d 5.04e-01 ± 1.76e-01

Research questions

• How to design a methodology for creation of synthetic households in **one – step** process?

• How much **control** we can embed into generation process in order to generate **realistic households**?

• How to deal with the **curse of dimensionality** phenomena?

