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One Bus, Two Bus, Red Bus, Blue Bus
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One Bus, Two Bus, Red Bus, Blue Bus
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Generalized Nested Logit allows overlapping nests
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That darn blue bus operator just won’t quit!
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Adding a Bus nest to a GNL ruins the model 
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Network GEV to the rescue!
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One Ring to Rule them All
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One Root Node

One Node
with no successors

for each Alternative

Directed  |  Connected  |  Finite  |  Circuit Free

with no predecessor

9Daly & Bierlaire, 2006
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Generalized Extreme Value Models

There are four requirements for a GEV generating function:

1. G(y) ≥ 0, for all y in 

2. G is homogeneous of degree µ > 0

3.  

4. The mixed partial derivatives of G with respect to elements
of y exist, are continuous, and alternate in sign

lim
yi→+∞

G(y ) = +∞, ∀i ∈{1,2,...,J}

 +
J
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Model Structure and Mathematics are Localized

 G
i depends only on:

 G
j of direct successor nodes

 aij allocation function on outbound edges

 ilogsum parameter of node µi

•  

•  

•  
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Gi : +
dim


(y) → + :G

i y( ) = aijG
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Network GEV Rules
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• Each network edge ij has an allocation parameter 
aij > 0

• Each network node i has a logsum parameter µi, 
and µi ≤ µj for all immediate predecessor nodes j

If the parameters obey these rules, then G for every 
node is an asymptotic GEV generating function, and 
GR is a complete GEV generating function.



Normalization of Allocation

• GEV models are invariant to scale, and thus require normalization

• Allocation parameters also require normalization
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Gi : +

dim
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Normalization of Allocation

• We don’t want the model to artificially prefer one alternative over another as a 
result of the structure of the network alone.

• Instead, we want:

• Or, we can have a complete set of alternative specific constants, which 
conflate ‘real’ preference bias and model bias correction factors. It is difficult 
(or impossible?) to separately identify these two factors when the model is 
normalized in this manner.

• However, getting the unbiased model can be tricky...
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     U i =Vi + εi =Vi + κ, ∀i



Error Recomposition Crash
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Error Recomposition Crash
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Error Recomposition Crash
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Crash Free Networks: Single Path Divergence
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• All paths from root to any given 
elemental alternative must diverge at the 
root

• No two such paths may share an 
outbound edge from the root node

• If two such paths converge prior to their 
terminus, they may not subsequently 
diverge.

• Prevents the crash



Crash Free Networks
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Crash Free Networks
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Crash Free Networks
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Crash Free Networks
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Crash Free Networks
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If Single Path Divergence applies, redefine the 
allocation parameters:

and enforce

Crash Free Networks
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aij = αij
µR

αij = 1i∈j↑∑



Crash Safe Networks: Single Path Convergence
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• All paths from root to any given 
elemental alternative must converge at 
the elemental alternative

• No two such paths may share an 
inbound edge to the elemental 
alternative

• If two such paths diverge subsequent 
from their origin, they may not 
subsequently converge until reaching the 
elemental alternative



Crash Safe Networks
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Crash Safe Networks
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Crash Safe Networks
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Crash Safe Networks
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If Single Path Convergence applies, define each node’s combined 
through-path allocation

redefine the allocation parameters:

and enforce

Crash Safe Networks
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Crash Safe Networks: Crash Padding
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Crash Safe Networks: Crash Padding
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Crash Safe Networks: Crash Padding
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A Simple Crash-Happy Network
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The Crash-Happy Network becomes Crash-Safe
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Oh my, grandma! What big non-linear constraints 
you have on your network allocation parameters!
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Relaxing Parameter Constraints

αij = 1i∈j↑∑

    

αij =
exp φij( )
exp φkj( )⎡
⎣⎢

⎤
⎦⎥

k∈j ↑
∑



Relaxing Parameter Constraints

• Estimation of transformed phi parameters is simpler, but...

• Changes the shape of the distribution of estimators

• A non-allocation is represented by                        which is resistant to 
hypothesis testing

The original form allowed                  which facilitates hypothesis testing
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φij =−∞

αij = 0

αij =
exp φij( )
exp φkj( )⎡
⎣⎢

⎤
⎦⎥

k∈j ↑
∑



What happens when some people care about color? 
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What happens when some people care about color? 
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Structural Disaggregation

This allows decision-maker attributes to be incorporated 
into the structural form of the model

    

αij =
exp φij( )
exp φkj( )⎡
⎣⎢

⎤
⎦⎥

k∈j ↑
∑

    

αtij =
exp φij

∗ + φijZt( )
exp φkj

∗ + φkjZt( )⎡
⎣⎢

⎤
⎦⎥

k∈j ↑
∑
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A New, More Basic Model?

• Nested Logit as a simplification of NetGEV: 
      is binary and fixed by the modeler
      is estimated  

• What if we simplify the other way?
      is binary and fixed by the modeler
      is estimated   α
 µ

 α

 µ



At the limit, nests become deterministic blocks
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lim
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•      distributed Gumbel

•  Individual      appear in the utility functions for multiple alternatives, 
except for one unique error term for each alternative

• The network structure defines the set of epsilons for each alternative

Utilities can be expressed as the maximum among 
“utilitarian” building blocks
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Block Logit, Independent Blocking
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Block Logit, Competitive Blocking
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