Activity-based Travel Demand Forecasting: Extensions to the SBB Nationwide Model

nextRail19

Tim Hillel, Janody Pougala, and Michel Bierlaire Patrick Manser and Wolfgang Scherr

> Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL Angebotsplanung Schweizerische Bundesbahnen SBB AG

Travel demand forecasting at SBB – big picture

- SBB is currently developing a multimodal and microscopic transport model as an extension of the existing rail model
- → Model requirements:
 - ability to simulate long-term forecasting scenarios (2040+)
 - representation of transport modes that are competing with the railway
 - **door-to-door** simulation of travel (e.g. access to train stations)
 - future transport modes (e.g. autonomous vehicles and ridesharing services from and to the rail stations)
 - detailed representation of demographic shifts and disruptive policies
- → Pioneers in this field, need for more research on various topics

SIMBA MOBi: microscopic travel simulation of Switzerland

MOBi.plans' output: individual full-day plans

MOBi.Plans: microscopic travel demand

→ A sequence of steps to construct individual day plans

EPFL Research – Model extensions

EPFL Research – Model extensions

Ownership model – current approach

• Individual-level DCM (MNL) with 10 alternatives:

	GA	Regional ticket	Half fare	RT + HF	None
Car	1	2	3	4	5
No-car	6	7	8	9	10

 Individual-level input features from travel survey data – manual specification (arbitrary utility functions)

Mobility resources in Switzerland in 2015, Danalet & Mathys (STRC2018)

Improvements

1. Data

 Augment travel survey with network-level data - individual, household, zonal, and canton level input features

2. Structure

- Sequential individual-household-individual decision structure
- 3. Machine learning
 - Assisted specification DCMs using Ensemble Learning (EL)

Data

Augmenting traditional travel surveys with network-level data for predicting ownership of mobility instruments: A case study of Switzerland (ISCTSC2020, submitted)

Structure

Structure

Machine learning - Decision trees

Ensemble learning

Ensemble learning

Assisted specification approach

- 1. Train ensemble learning model on dataset
- Investigate structure of ensemble learning model, using it to inform utility specifications for DCM
- 3. Simplify DCM by combining parameters where necessary

Assisted specification inferences

- Feature importances sum gain over all splits for each features
- Feature interactions sum gain for each hierarchical combination of *n* features
- Non-linear interactions of input features investigate distribution of split values over all splits for each feature

Weak teachers: Assisted specification of discrete choice models using ensemble learning (hEART 2019)

Parking cost – household car ownership

Current results – Joint estimation

Model	Features	Fit time	CEL
DCM	33	~10 hours	-1.54
ML (original data)	33	~5 min	- 1.48
ML (new data)	97	~20 min	-1.44

Current results – Sequential estimation

	N	1L	DCM	
Model	Fit time	CEL	Fit time	CEL
Individual DL	0:46	-0.307	3:22	-0.354
Household car	4:10	-0.84	1:04:03	-0.87
Individual PT	9:19	-1.21	4:04:30	-1.08

Summary

- SBB MOBi.Plans Activity-based microscopic travel demand
 - A sequence of steps to construct individual day plans
 - Combination of DCMs and Simulation
- Current work to make improvements to:
 - Mobility ownership model
 - Tour based mode-choice
 - Joint estimation of destination and mode choice
- Mobility ownership model improvements
 - Data Augmented with network level data
 - Structure sequential modelling structure
 - Machine learning assisted specification

Further work

- Finalise DCM utility specifications for sequential model
- Validate sequential DCM on synthetic population -MOBi.synpop
- Proceed to further extensions:
 - Tour-based mode-choice
 - Joint destination/mode-choice

