Continuous Pricing with Advanced Discrete Choice Demand Modeling: A Spatial Branch and Benders Decomposition Algorithm

Tom Haering Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

19th Swiss Operations Research Days, Lugano 22-23 June 2023

Outline

(1) Introduction

(2) Methodology

(3) Experimental Results
(4) Conclusions

EPFL

The Continuous Pricing Problem (CPP)

CPP

- Supplier offers S products for sale. Goal: determine optimal price for each product to maximize total profit.
- Demand for each product is modeled using a discrete choice model (DCM).

DCM

- For every costumer n and product i a stochastic utility $U_{i n}$ is defined, which depends on socio-economic characteristics of the individual and attributes of the products (e.g. the price).

The Continuous Pricing Problem (CPP)

Utility

- Utility of alternative i for costumer n :

$$
U_{i n}=\sum_{k \neq p} \beta_{k} x_{i n k}+\beta_{p} p_{i}+\varepsilon_{i n}
$$

- β_{k} : parameters (exogenous)
- $x_{i n k}$: attributes (exogenous)
- p_{i} : price of alternative i
- $\varepsilon_{i n}$: stochastic error term

EPFL

The Continuous Pricing Problem (CPP)

Probability

- Probability that costumer n chooses alternative i :

$$
P_{n}(i)=\mathbb{P}\left(U_{i n} \geq U_{j n} \forall j \in J\right)
$$

- Logit $\left(\varepsilon_{i n} \sim\right.$ i.i.d. $\left.\operatorname{Gumbel}(0,1)\right)$:

$$
P_{n}(i)=\frac{e^{V_{i n}}}{\sum_{j \in C_{n}} e^{V_{j n}}}
$$

- Mixed Logit (Logit $+\beta_{k} \sim F\left(\beta_{k} \mid \theta\right)$):

$$
P_{n}(i)=\int \frac{e^{V_{i n}\left(\beta_{k n}\right)}}{\sum_{j \in C_{n}} e^{V_{j n}\left(\beta_{k n}\right)}} f\left(\beta_{k} \mid \theta\right) d \beta_{k}
$$

Monte Carlo Simulation

- Simulate R scenarios (draws), each with deterministic utilities $U_{\text {inr }}$:

$$
U_{i n r}=\sum_{k \neq p} \beta_{k} x_{i n k}+\beta_{p} p_{i}+\varepsilon_{i n r}
$$

- Choice variables:

$$
\omega_{i n r}=\left\{\begin{array}{l}
1 \text { if } U_{i n r}=\max _{j} U_{j n r} \\
0 \text { else }
\end{array}\right.
$$

- Probability estimator:

$$
\widehat{P}_{n}(i)=\frac{1}{R} \sum_{r} \omega_{i n r}
$$

EPFL

MILP formulation [Paneque et al., 2021]

$\max _{p, \omega, U, H} \frac{1}{R} \sum_{r} \sum_{n} \sum_{i \in S} p_{i} \omega_{i n r}$
s.t.

$$
\begin{array}{rlrl}
\sum_{i} \omega_{i n r} & =1 & \forall n, r & \left(\mu_{n r}\right) \\
H_{n r} & =\sum_{i} U_{i n r} \omega_{i n r} & \forall n, r & \left(\zeta_{n r}\right) \\
H_{n r} & \geq U_{i n r} & \forall i, n, r & \left(\alpha_{i n r}\right) \\
U_{i n r} & =\sum_{k \neq p} \beta_{k} x_{i n k}+\beta_{p} p_{i}+\varepsilon_{i n r} & \forall i, n, r & \left(\kappa_{i n r}\right) \\
\omega & \in\{0,1\}^{J N R} & & \\
p, U, H & \in \mathbb{R}^{S}, \mathbb{R}^{J N R}, \mathbb{R}^{N R} &
\end{array}
$$

Literature

[Li and Huh, 2011], [Gallego and Wang, 2014], ...

- Extensive research for Logit and Nested Logit (NL) integration.
[Li et al., 2019], [Marandi and Lurkin, 2020],
[van de Geer and den Boer, 2022], ...
- Tackled Mixed Logit (ML) integration in various ways, e.g. approximations, assuming consumer homogeneity, or considering only discrete probability measures.
[Paneque et al., 2022]
- Apply a Lagrangian decomposition scheme to speed up the solution of the MILP.
- Limited success.

Outline

(1) Introduction

(2) Methodology

(3) Experimental Results
(4) Conclusions

EPFL

QCQP formulation

$\max _{p, \omega, U, H} \frac{1}{R} \sum_{r} \sum_{n} \sum_{i \in S} p_{i} \omega_{i n r}$
s.t.

$$
\begin{array}{rlrl}
\sum_{i} \omega_{i n r} & =1 & \forall n, r & \left(\mu_{n r}\right) \\
H_{n r} & =\sum_{i} U_{i n r} \omega_{i n r} & \forall n, r & \left(\zeta_{n r}\right) \tag{nr}\\
H_{n r} & \geq U_{i n r} & \forall i, n, r & \left(\alpha_{i n r}\right) \\
U_{i n r} & =\sum_{k \neq p} \beta_{k} x_{i n k}+\beta_{p} p_{i}+\varepsilon_{i n r} & \forall i, n, r & \left(\kappa_{i n r}\right) \\
\omega & \in[0,1]^{J N R} & & \\
p, U, H & \in \mathbb{R}^{S}, \mathbb{R}^{J N R}, \mathbb{R}^{N R} &
\end{array}
$$

QCLP formulation

$\max _{p, \omega, \eta, U, H} \frac{1}{R} \sum_{r} \sum_{n} \sum_{i \in S} \eta_{i n r}$
s.t. $\sum_{i} \omega_{i n r}=1$

$$
\begin{aligned}
H_{n r} & =\sum_{i}\left(\sum_{k \neq p} \beta_{k} x_{i n k}+\varepsilon_{i n r}\right) \omega_{i n r}+\beta_{p} \eta_{i n r} & \forall n, r & \left(\zeta_{n r}\right) \\
H_{n r} & \geq U_{i n r} & \forall i, n, r & \left(\alpha_{i n r}\right) \\
U_{i n r} & =\sum_{k \neq p} \beta_{k} x_{i n k}+\beta_{p} p_{i}+\varepsilon_{i n r} & \forall i, n, r & \left(\kappa_{i n r}\right) \\
& & & \\
\eta_{i n r} & =p_{i} \omega_{i n r} & \forall i \in S, n, r & \left(\lambda_{i n r}\right)
\end{aligned}
$$

$$
\omega \in[0,1]^{J N R}
$$

$p, \eta, U, H \quad \in \quad \mathbb{R}^{S}, \mathbb{R}^{S N R}, \mathbb{R}^{J N R}, \mathbb{R}^{N R}$

Simplification

- Assume reasonable bounds on price, $p_{i} \in\left[p_{i}^{L}, p_{i}^{U}\right]$. This means some choices are fixed.

Simplification

Observations

- The number of controlled prices is generally low (usually, one or two).
- There are 2^{J} combinations of lower and upper bounds.

Procedure for each n and r

- For each combination, identify the best alternative.
- If alternative i is never the best, set $w_{i n r}=0$.
- If alternative i is always the best, set $w_{i n r}=1$.

Note

This happens often when bounds are tight.

Spatial Branch \& Bound (B\&B) Algorithm

Relaxation

- Relax the constraint $\eta_{i n r}=p_{i} \omega_{i n r}$ with a McCormick envelope:

$$
\begin{array}{llll}
\eta_{i n r} & \geq p_{i}^{L} \omega_{i n r} & \forall i \in S, n, r & \left(\lambda_{i n r}^{1}\right) \\
\eta_{i n r} & \geq p_{i}^{U} \omega_{i n r}+p_{i}-p_{i}^{U} & \forall i \in S, n, r & \left(\lambda_{i n r}^{2}\right) \\
\eta_{i n r} & \leq p_{i}^{L} \omega_{i n r}+p_{i}-p_{i}^{L} & \forall i \in S, n, r & \left(\lambda_{i n r}^{3}\right) \\
\eta_{i n r} \leq p_{i}^{U} \omega_{i n r} & \forall i \in S, n, r & \left(\lambda_{i n r}^{4}\right)
\end{array}
$$

- Integrality is preserved for tight enough bounds.

Break points

Competing with opt-out: utility

EPFL

Break points

Competing with opt-out: revenue

EPFL

Break points

Competing with opt-out: valid inequality

EPFL

Valid inequalities based on break points

Competing with opt-out

$$
\eta_{i n r} \leq \frac{\bar{p}_{i}\left(p_{i}^{U}-p_{i}\right)}{p_{i}^{U}-\bar{p}_{i}}
$$

Competing with another controlled alternative

$$
\eta_{i n r} \leq \frac{\beta_{j} p_{i}^{U} p_{j}-c_{i} p_{i}^{U}+c_{j} p_{i}^{U}-p_{i}\left(\beta_{j} p_{j}^{L}-c_{i}+c_{j}\right)}{\beta_{i} p_{i}^{U}-\beta_{j} p_{j}^{L}+c_{i}-c_{j}}
$$

and

$$
\eta_{i n r} \leq \frac{\beta_{j} p_{i}^{U} p_{j}-c_{i} p_{i}^{U}+c_{j} p_{i}^{U}-p_{i}\left(\beta_{j} p_{j}^{U}-c_{i}+c_{j}\right)}{\beta_{i} p_{i}^{U}-\beta_{j} p_{j}^{U}+c_{i}-c_{j}}
$$

Spatial Branch \& Bound (B\&B) Algorithm

Convergence

- Every relaxation provides an upper bound on the maximal profit.
- Any solution value for the price gives an immediate feasible solution (lower bound) due to integrality.

Custom $B \& B$ vs. standard $B \& B$

- We only branch on S continuous variables, instead of branching on SNR continuous (QCLP) or JNR binary (MILP) variables.

Benders Decomposition

- The McCormick relaxation (linear program) at each node is solved by the use of a Benders decomposition:

Benders Decomposition

- Master problem (MP): compute candidate solutions for the price
- Subproblem (SP): given a price, compute reduced costs to construct optimality cut to add to the MP
- SP is highly separable: utility maximization for each customer and scenario can be solved independently
- Make use of fully disaggregated optimality cuts (one cut per customer and scenario)
- Can add valid inequalities in the Master problem.

Outline

(1) Introduction

(2) Methodology

(3) Experimental Results

EPFL

Case Study

Parking space operator [lbeas et al., 2014]

- Alternatives: Paid-Street-Parking (PSP), Paid-Underground-Parking (PUP) and Free-Street-Parking (FSP).
- Optimize prices for PSP and PUP, FSP is the opt-out alternative.
- Socio-economic characteristics: trip origin, vehicle age, driver income, residence area.
- Product attributes: access time to parking, access time to destination, and parking fee (price).
- Choice model is a Mixed Logit, $\beta_{\text {fee }}, \beta_{\text {time_parking }} \sim \mathcal{N}(\mu, \sigma)$.

Computational results

Computational results

Optimality gap progression for two prices, $N=50, R=1000$, Time limit=21600s

Simplifications + valid inequalities

Table: One-price and two-price optimization runtime (seconds) when using simplifications (S) + valid inequalities (V1 and V2). Time limit $=36000$ s

N	R	QCLP	B\&B	B\&BD	B\&BD+S	B\&BD+S+V1	B\&BD+S+V2
100	100	107	29	98	30	33	41
100	500	4739	625	851	252	673	519
100	1000	27586	10007	3387	1865	3329	2388
100	3000	-	25950	5606	3337	5019	3905
N	R	QCLP	$\mathrm{B} \& B$	B\&BD	B\&BD+S	B\&BD+S+V1	B\&BD+S+V2
50	100	840	660	1925	416	11253	18447
50	500	30600	16826	19904	4686	0.40%	1.01%
50	1000	20.68%	1.59%	0.07%	15066	1.87%	4.68%
50	3000	-	42.88%	2.07%	0.06%	3.54%	8.71%

Outline

(1) Introduction

(2) Methodology

(3) Experimental Results
4. Conclusions

TRANSP-OR

EPFL

Conclusions

- Introduced more efficient formulation of the CPP as a QCQP and QCLP.
- Developed methodology that is applicable to any choice-based optimization problem integrating any advanced discrete choice model.
- Showed that we can solve instances to optimality before GUROBI finds a first feasible solution.

Thank you for your attention!

Appendix

Table 1: Utility parameters reported in [lbeas et al., 2014]

Parameter	Value
ASC $_{\text {FSP }}$	0.0
ASC $_{\text {PSP }}$	32.0
ASC	34.0
Fee $(€)$	$\sim \mathcal{N}(-32.328,14.168)$
Fee PSP - low income $(€)$	-10.995
Fee PUP - low income $(€)$	-13.729
Fee PSP - resident $(€)$	-11.440
Fee PUP - resident $(€)$	-10.668
Access time to parking (\min)	$\sim \mathcal{N}(-0.788,1.06)$
Access time to destination (\min)	-0.612
Age of vehicle $(1 / 0)$	4.037
Origin $(1 / 0)$	-5.762

Appendix

Table 2: Solve time (seconds) for single-price optimization (small-scale)

N	R	MILP	QCQP	QCLP	B\&B	B\&BD
100	100	2849	392	242	174	216
100	150	7534	1087	708	378	574
100	200	8549	1746	1018	701	603
100	250	25333	2698	1713	1032	1012
100	300	37396	4346	3416	1511	1066
100	350	45362	6715	3927	1795	1169
100	400	65065	8986	5896	2104	1485

Appendix

Table 3: Optimal profit and price for single-price optimization (small-scale)

		MILP		QCQP		QCLP		B\&B		B\&BD	
N	R	Profit	Price								
100	100	54.134	$[0.661]$	54.134	$[0.661]$	54.134	$[0.661]$	54.133	$[0.661]$	54.133	$[0.661]$
100	150	54.233	$[0.67]$	54.233	$[0.67]$	54.233	$[0.67]$	54.233	$[0.67]$	54.232	$[0.67]$
100	200	54.599	$[0.662]$	54.599	$[0.662]$	54.599	$[0.662]$	54.598	$[0.663]$	54.596	$[0.662]$
100	250	54.622	$[0.673]$	54.622	$[0.673]$	54.622	$[0.673]$	54.619	$[0.673]$	54.618	$[0.673]$
100	300	54.48	$[0.67]$	54.48	$[0.67]$	54.479	$[0.67]$	54.479	$[0.67]$	54.478	$[0.67]$
100	350	54.449	$[0.657]$	54.448	$[0.657]$	54.449	$[0.657]$	54.448	$[0.657]$	54.447	$[0.657]$
100	400	54.389	$[0.664]$	54.389	$[0.664]$	54.389	$[0.664]$	54.389	$[0.669]$	54.388	$[0.664]$

Appendix

Table 4: Solve time (seconds) for two-price optimization (small-scale)

		MILP		QCQP	QCLP	B\&B	B\&BD
N	R	Time	Gap (\%)	Time	Time	Time	Time
50	20	1238	0.01	60	32	32	184
50	50	3275	0.01	487	199	201	933
50	80	34907	0.01	1516	564	488	2051
50	100	251466	0.01	2475	843	614	2099
50	150	192213	0.01	2105	2404	1651	5614
50	200	252000	23.92	3023	3384	2438	5402

Appendix

Table 5: Optimal profit and price for two-price optimization (small-scale)

		MILP			QCQP			QCLP		B\&B		
N	R	Profit	Price	Profit	Price	Profit	Price	Profit	Price	Profit	PrBD	
50	20	27.417	$[0.609,0.653]$	27.417	$[0.609,0.653]$	27.417	$[0.609,0.653]$	27.416	$[0.609,0.653]$	27.414	$[0.609,0.653]$	
50	50	26.71	$[0.556,0.654]$	26.71	$[0.556,0.654]$	26.71	$[0.556,0.654]$	26.71	$[0.556,0.654]$	26.707	$[0.556,0.654]$	
50	80	27.413	$[0.57,0.648]$	27.413	$[0.57,0.648]$	27.413	$[0.57,0.648]$	27.412	$[0.57,0.648]$	27.41	$[0.57,0.648]$	
50	100	27.546	$[0.608,0.704]$	27.546	$[0.608,0.704]$	27.546	$[0.608,0.704]$	27.544	$[0.608,0.704]$	27.544	$[0.608,0.704]$	
50	150	27.29	$[0.562,0.668]$	27.289	$[0.562,0.668]$	27.29	$[0.562,0.668]$	27.29	$[0.562,0.668]$	27.288	$[0.562,0.667]$	
50	200	26.997	$[0.546,0.679]$	26.997	$[0.546,0.679]$	26.997	$[0.546,0.679]$	26.995	$[0.546,0.679]$	26.996	$[0.546,0.679]$	

Appendix

Table 6: Solve time (seconds) for single-price optimization (large-scale)

					MILP		QCQP		QCLP		B\&B		B\&BD	
N	R	Time	Gap (\%)											
100	200	8348	0.01	1059	0.01	698	0.01	310	0.00	409	0.01			
100	400	36000	20.39	5013	0.01	3629	0.01	1255	0.01	1050	0.01			
100	600	36000	27.0	14796	0.01	10775	0.01	3110	0.01	1707	0.01			
100	800	36000	113.12	21626	0.01	15784	0.01	6206	0.01	2444	0.01			
100	1000	36000	122.21	3600	0.04	26727	0.01	10007	0.01	3131	0.01			
100	1500	36000	121.82	36000	16.69	36000	0.49	22892	0.01	5093	0.01			
100	2000	36000	124.91	36000	300.05	36000	5.33	36000	1.88	7341	0.01			
100	3000	36000	125.44	36000	-	36000	-	36000	29.33	12396	0.01			
100	4000	36000	149.07	36000	-	36000	-	36000	39.42	20990	0.01			
100	5000	36000	-	3600	-	36000	-	36000	34.22	28768	0.01			
100	6000	36000	-	36000	-	36000	-	36000	44.95	35917	0.01			
100	7000	36000	-	36000	-	3600	-	36000	44.88	36000	0.16			

Appendix

Table 7: Optimal profit and price for single-price optimization (large-scale)

		MILP		QCQP		QCLP		B\&B		B\&BD	
N	R	Profit	Price								
100	200	54.599	$[0.662]$	54.599	$[0.662]$	54.599	$[0.662]$	54.598	$[0.663]$	54.596	$[0.662]$
100	400	54.385	$[0.664]$	54.389	$[0.664]$	54.389	$[0.664]$	54.389	$[0.669]$	54.388	$[0.664]$
100	600	54.019	$[0.625]$	54.295	$[0.667]$	54.295	$[0.667]$	54.295	$[0.667]$	54.294	$[0.667]$
100	800	54.319	$[0.662]$	54.327	$[0.653]$	54.326	$[0.653]$	54.325	$[0.653]$	54.326	$[0.653]$
100	1000	54.421	$[0.663]$	54.429	$[0.661]$	54.429	$[0.661]$	54.429	$[0.661]$	54.429	$[0.661]$
100	1500	54.488	$[0.67]$	49.33	$[0.971]$	54.514	$[0.654]$	54.53	$[0.659]$	54.529	$[0.659]$
100	2000	54.511	$[0.656]$	22.469	$[1.379]$	53.966	$[0.613]$	54.54	$[0.667]$	54.541	$[0.666]$
100	3000	54.439	$[0.664]$	-	-	-	-	52.387	$[0.801]$	54.448	$[0.661]$
100	4000	54.422	$[0.668]$	-	-	-	-	51.175	$[0.856]$	54.428	$[0.669]$
100	5000	-	-	-	-	-	-	53.144	$[0.764]$	54.394	$[0.661]$
100	6000	-	-	-	-	-	-	49.207	$[0.971]$	54.399	$[0.663]$
100	7000	-	-	-	-	-	-	49.229	$[0.97]$	54.41	$[0.669]$

Appendix

Table 8: Solve time (seconds) for two-price optimization (large-scale)

				MILP		QCQP		QCLP		B\&B	
N	R	Time	Gap (\%)								
50	200	36000	39.22	3098	0.01	3338	0.01	2426	0.01	5498	0.01
50	400	36000	100.58	17774	0.01	23325	0.01	11746	0.01	21838	0.01
50	600	36000	217.26	36000	0.18	36000	0.26	26662	0.01	35367	0.01
50	800	36000	138.07	36000	1.75	36000	2.21	36000	0.16	35938	0.01
50	1000	36000	185.45	36000	9.52	36000	20.68	36000	1.48	36000	0.07
50	1500	36000	345.36	36000	42.8	36000	42.04	36000	11.41	36000	0.32
50	2000	36000	393.41	36000	258.89	36000	-	36000	28.79	36000	0.58
50	3000	36000	-	36000	263.73	36000	-	36000	44.48	36000	2.08
50	4000	36000	-	36000	280.59	36000	-	36000	72.86	36000	10.90
50	5000	36000	-	36000	-	36000	-	36000	127.64	36000	34.70
50	6000	36000	-	36000	-	36000	-	36000	128.44	36000	41.96
50	7000	36000	-	36000	-	36000	-	36000	138.01	36000	51.96

Appendix

Table 9: Optimal profit and price for two-price optimization (large-scale)

N	R	MILP		QCQP		QCLP		$B \& B$		$B \& B D$	
		Profit	Price								
50	200	26.997	[0.546, 0.679]	26.997	[0.546, 0.679]	26.997	[0.546, 0.679]	26.995	[0.546, 0.679]	26.996	[0.546, 0.679]
50	400	21.689	[0.789, 0.956]	27.174	[0.556, 0.665]	27.174	[0.556, 0.665]	27.172	[0.556, 0.665]	27.172	[0.556, 0.665]
50	600	13.801	[1.087, 1.281]	27.243	[0.561, 0.682]	27.245	[0.563, 0.671]	27.246	[0.562, 0.683]	27.246	[0.562, 0.683]
50	800	16.993	[0.877, 1.203]	27.072	[0.578, 0.668]	27.06	[0.559, 0.659]	27.082	[0.573, 0.667]	27.089	[0.574, 0.667]
50	1000	13.987	[1.2, 1.212]	26.968	[0.59, 0.684]	26.208	[0.584, 0.797]	27.012	[0.571, 0.667]	27.031	[0.573, 0.67]
50	1500	10.144	[1.415, 1.485]	26.319	[0.584, 0.799]	26.322	[0.584, 0.799]	26.982	[0.582, 0.698]	27.052	[0.569, 0.667]
50	2000	9.255	[1.239, 1.866]	11.82	[1.199, 1.395]	-	-	26.718	[0.632, 0.712]	27.094	[0.565, 0.661]
50	3000	-	-	11.849	[1.198, 1.397]	-	-	25.983	[0.5, 0.756]	27.144	[0.571, 0.677]
50	4000	-	-	11.844	[1.199, 1.396]	-	-	24.707	[1.242, 0.766]	27.078	[0.582, 0.699]
50	5000	-	-	-	-	-	-	18.988	[1.0, 1.0]	26.012	[0.5, 0.755]
50	6000	-	-	-	-	-	-	18.915	[1.0, 1.0]	25.973	[0.5, 0.757]
50	7000	-	-	-	-	-	-	18.926	[1.0, 1.0]	24.681	[1.231, 0.766]

Appendix: Callback implementation

```
def mycallback(model, where):
    if where == GRB.Callback.MIPNODE:
        status = model.cbGet(GRB.Callback.MIPNODE_STATUS)
        if status == GRB.OPTIMAL:
            sol = model.cbGetNodeRel(model._vars)
            omega, eta = compute_cpp_from_p_parking(sol[0], sol[1])
            mysol = [sol[0], sol[1]] + list(eta.values()) + list(omega.values())
            model.cbSetSolution(model._vars, mysol)
```


Bibliography I

Gallego, G. and Wang, R. (2014).
Multiproduct price optimization and competition under the nested logit model with product-differentiated price sensitivities.
Operations Research, 62(2):450-461.
(lbeas, A., Dell'Olio, L., Bordagaray, M., and Ortúzar, J. d. D. (2014). Modelling parking choices considering user heterogeneity. Transportation Research Part A: Policy and Practice, 70:41-49.
Ei, H. and Huh, W. T. (2011).
Pricing multiple products with the multinomial logit and nested logit models: Concavity and implications.
Manufacturing \& Service Operations Management, 13(4):549-563.

Bibliography II

围 Li, H., Webster, S., Mason, N., and Kempf, K. (2019).
Product-line pricing under discrete mixed multinomial logit demand: winner-2017 m\&som practice-based research competition. Manufacturing \& Service Operations Management, 21(1):14-28.

雷 Marandi, A. and Lurkin, V. (2020).
An exact algorithm for the static pricing problem under discrete mixed logit demand.
arXiv preprint arXiv:2005.07482.
Paneque, M. P., Bierlaire, M., Gendron, B., and Azadeh, S. S. (2021). Integrating advanced discrete choice models in mixed integer linear optimization.
Jransportation Research Part B: Methodological, 146:26-49. - transp-ar

Bibliography III

庫 Paneque, M. P., Gendron, B., Azadeh, S. S., and Bierlaire, M. (2022). A lagrangian decomposition scheme for choice-based optimization. Computers \& Operations Research, 148:105985.
(van de Geer, R. and den Boer, A. V. (2022).
Price optimization under the finite-mixture logit model. Management Science, 68(10):7480-7496.

