En Ayuz

Colombie

Romanel-sur-Morges

Denges-Echander

EPFL I

12

SBB CFF FFS

Lausann

ouxtens-Mézerv

Resolving activityscheduling conflicts based on individual flexibility

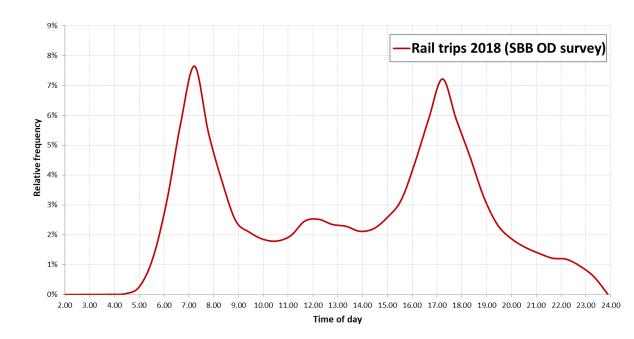
Outre-Senoge

STRC, Ascona, 13.09.2021

Patrick Manser, SBB Tom Haering, TRANSP-OR

Agenda

- 1. Introduction: motivation & project overview
- 2. A novel framework to resolve activity-scheduling conflicts
- 3. Case study: full-time workers of Lausanne
- 4. Conclusion



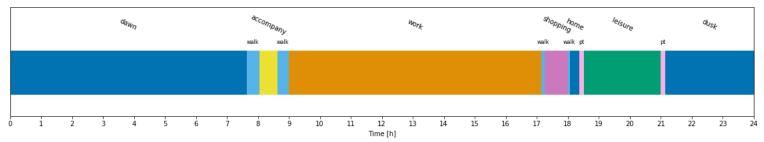
1. Motivation & project overview

Transport modelling at SBB

- → Aid for mid-term (2025) and long-term (2040/50) investment decisions:
 - service planning
 - fleet and infrastructure planning
 - financial planning
 - corporate strategy
- Microscopic model SIMBA MOBi is applied and integrated into planning processes

Schweizerische Eidgenossenschaft

Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

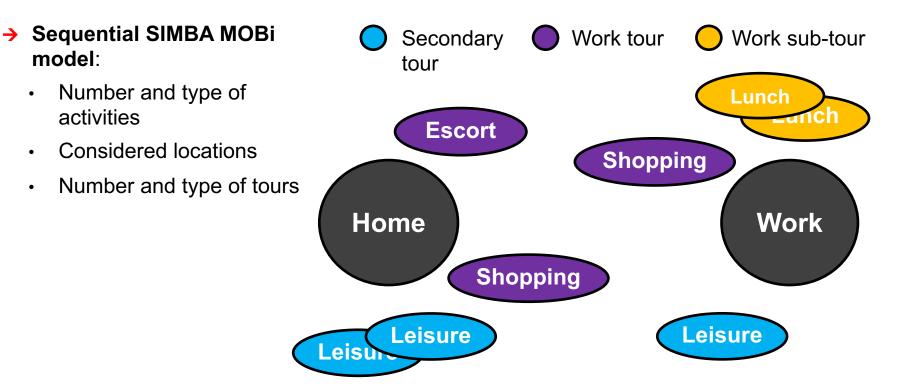

Collaboration between EPFL and SBB

- Project "Optimization of individual mobility plans to simulate future travel in Switzerland" funded by Innosuisse started in Sept. 2020.
- → Goal: Improve predictive performance of SIMBA MOBi
- → Key to success in this collaboration:
 - EPFL and SBB are jointly working on **the same problem** (very regular update meetings)
 - EPFL (Janody Pougala, Tim Hillel & Rico Krueger) develop theoretical framework which is **flexible and easily extendable**
 - SBB combines the new methodology with existing model components of SIMBA MOBi, step by step

Activity-based model in SIMBA MOBi

→ Model that solves the **daily activity-scheduling problem** for each individual:

- Existing approach at SBB: choice dimensions (number of activities, time of day, mode...) are treated sequentially using discrete choice models
- Presented novel approach:
 - Optimization program that treats choices in the temporal dimension simultaneously
 - Non-temporal decisions are made based on existing discrete choice models
 - Solves scheduling conflicts (overlapping activities) according to utility-maximizing principles depending on flexibility parameters


2. A novel framework to resolve activity-scheduling conflicts

General structure Reported Schedules Utility specification Schedule Parameter Flexibility alternatives estimation parameters Activity set for Schedule Optimized each individual optimization schedules Synthetic population

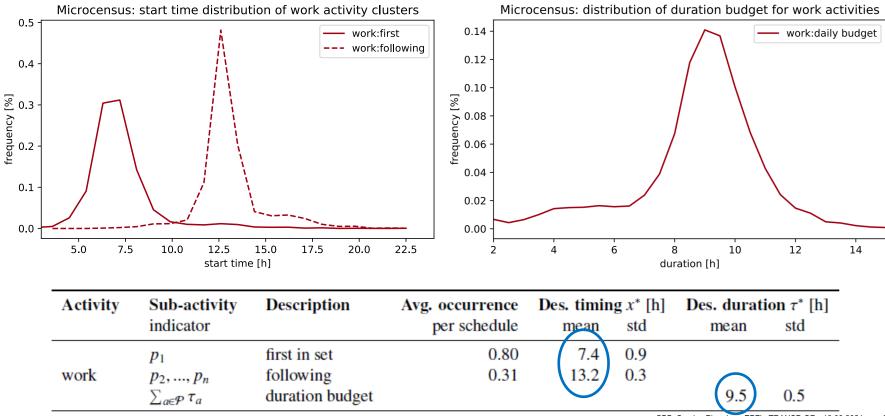
Non-temporal choices – static input for this study

Temporal choices – simulated in this framework

→ Sequential SIMBA MOBi Secondary Work tour Work sub-tour model: tour Number and type of ٠ Lunch activities Escort **Considered** locations • Shopping Number and type of tours • Simulated choice Work Home dimensions: Shopping Start time ٠ <u>.</u> Duration ٠ Leisure Leisure Location & mode (travel Leisu ٠ times)

Utility specification

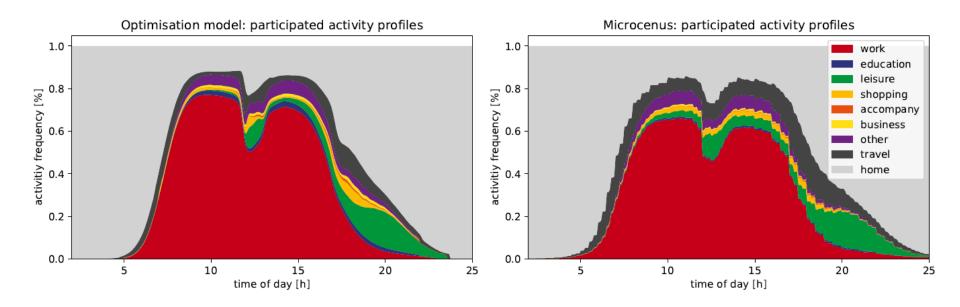
- → Used for estimation and optimization program
- → x_a = start time of activity a τ_a = duration of activity a


$$U_{i} = \sum_{a \in \mathcal{A}_{i}} U_{\text{timing}}(x_{a}) + \sum_{a \in \mathcal{S}_{i}} U_{\text{duration}}(\tau_{a}) + \sum_{a \in \mathcal{A}_{i} \setminus \{\text{dusk}\}} U_{\text{tt},a}(tt_{a})$$
$$U_{\text{timing}}(x_{a}) = \beta_{a}^{\text{early}} \max(0; (x_{a}^{*}) - x_{a}) + \beta_{a}^{\text{late}} \max(0; x_{a} - (x_{a}^{*}))$$
$$U_{\text{duration}}(\tau_{a}) = \beta_{a}^{\text{short}} \max(0; (\tau_{a}^{*}) - \tau_{a}) + \beta_{a}^{\text{long}} \max(0; \tau_{a} - (\tau_{a}^{*}))$$
Flexibility parameters Desired start times and durations

3. Case study: full-time workers of Lausanne

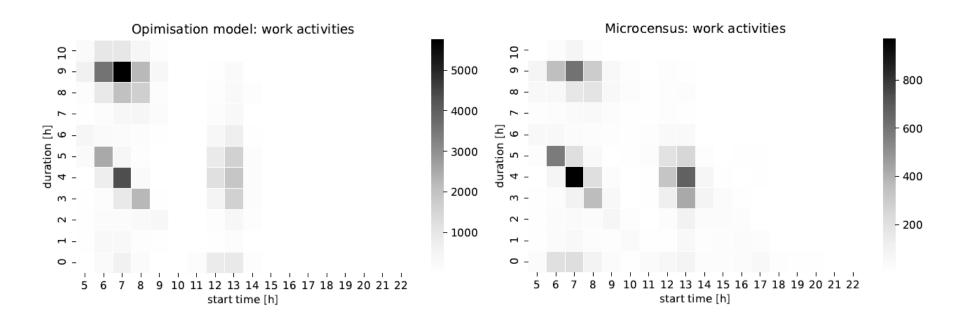
Desired start times and durations

SBB, Service Planning • EPFL, TRANSP-OR • 13.09.2021 13


Quantifying flexibility

- Maximum likelihood estimation of a logit model using Biogeme
- Alternatives are generated based on draws from existing sequential SIMBA MOBi model

Activity type	Parameter values			
	β_a^{early}	eta_a^{late}	β_a^{short}	eta_a^{long}
work: first in set	-0.615	-0.436		
work:following	-0.406	0		
work:duration budget			-0.022	0
leisure:lunch	-1.610	-0.821	-7.550	-1.360
leisure:work tour	-0.195	0	0	0
leisure:secondary tour	-0.076	0	-3.060	-0.692
leisure:no primary activity	-0.053	0	0	-0.588
home:lunch	-2.040	-0.929		
home:after work	-0.073	-0.596		
home:no work	0	-0.198		
home:duration budget			0	-0.354



Activity profiles for full-time workers in Lausanne

Work: correlation between start time and duration

3. Conclusion

Conclusion

- → Efficient coupling of new methodical framework with existing discrete choice models:
 - Temporal dimension: Utility maximization depending on individual flexibility parameters (calibration with maximum likelihood; simulation with MILP)
 - Non-temporal choices: Draws from existing SIMBA MOBi model
- → Application for full-time workers of the city of Lausanne
- → Further work:
 - Improve performance of the optimization procedure
 - Integration of level of service per mode into parameter estimation
 - Sensitivity testing
 - · Generation of schedule alternatives

Contact

- → Patrick Manser, patrick.manser@sbb.ch
- → Tom Häring, tom.haering@epfl.ch