PhD defense

Modeling and estimation of pedestrian flows in train stations

Flurin S. Hänseler

Lausanne, February 11, 2016
Introduction

- optimal design and operation of pedestrian facilities
- particular importance of rail access facilities
Pedestrian flows in train stations
Objectives

1. collect and analyze **data** of a case study train station
2. **model** the usage and level-of-service of rail access facilities
3. **apply** modeling framework to case study
Context

Data [DMA91, LCL99, LC00, GCDC14, vdHH14]
 • link/OD counts, traffic conditions, timetable/ridership, ...

Models [CL98, LLW01, Daa04, HB04, KHEM07, ZHL08, XLLH14]
 • demand estimation: facility usage assessment
 • traffic assignment: level-of-service assessment

Applications [HD04, RK07, SBBR08, JDH+09, SVvdH14]
 • many case studies
Outline

1. Case study
2. Demand estimation
3. Traffic assignment
4. Application and practical guidance
5. Conclusions
Outline

1. Case study
2. Demand estimation
3. Traffic assignment
4. Application and practical guidance
5. Conclusions
Lausanne railway station: Aerial view
Lausanne railway station: Pedestrian network
Pedestrian movements on January 16, 2013

Animation: https://youtu.be/HHMXTJJ1Q1kY
Outline

1. Case study
2. Demand estimation
3. Traffic assignment
4. Application and practical guidance
5. Conclusions
Demand estimation

- demand indicators
 - pedestrian counts
 - ridership data, train timetable
 - sales/survey data
 - trajectories

- assignment map: OD demand \rightarrow demand indicators

- find OD demand such that resulting demand indicators match actual observations as closely as possible
Notation 1

- discrete time $\tau \in \mathcal{T}$, e.g. $\Delta t = 1$ min
- walking network $\mathcal{G} = (\mathcal{N}, \mathcal{L})$
 - nodes $\nu \in \mathcal{N}$, links $\lambda \in \mathcal{L}$
- OD pair $\kappa \in \mathcal{K}$, $\kappa = (\nu_O, \nu_D)$
- OD demand $\textbf{d} = [d_{\kappa, \tau}]$
- link flow $\textbf{f} = [f_{\lambda, \tau}]$
Notation II

- platform $\pi \in P$
- train $\zeta \in Z$
 - platform π_ζ
 - boarding and alighting volumes e_{ζ}^{on}, e_{ζ}^{off}
 - arrival and departure times t_{ζ}^{arr}, t_{ζ}^{dep}
Structural model: Traffic assignment

Flow assignment

\[f = \Sigma_f(d; y) + \eta_f \]

where

\(\Sigma(\cdot) \) : pedestrian DTA

\(y \) : parameter vector

\(\eta(\cdot) \) : structural error

Example specification (→ case study):

[A1] route choice: shortest route

[A2] walking speed \(v = \mathcal{N}(1.34 \text{ m/s}, 0.34 \text{ m/s}) \) [Wei92]
Structural model: Platform exit flows I

→ alighting flows

⋯⋯ platform exit flows

D C B A
Structural model: Platform exit flows II

\[f_{\text{arr}} = \varphi(e_{\text{off}}; y) + \varepsilon\varphi \]

where

\[f_{\text{arr}} = \sum f_{\text{arr}}(d; y) + \eta_{f,\text{arr}} \text{ (from DTA)} \]

\[\varphi = [\phi_{\lambda,\tau}] \text{ (from alighting volumes; empirical model)} \]

example specification:

[A3] empirical exit flows \(\phi_{\lambda,\tau} \) as superposition of independent train contributions (next slide)
Structural model: Platform exit flows III

Figure: Train-induced platform exit flow
Structural model: Platform exit flows IV

(a) CDF
(b) PDF

Figure: Exit flow, platform #5/6, Lausanne, April 10, 2013
Lausanne railway station: Results

![Graph showing demand in pedestrian underpasses](image)

- **(a)** Base estimate (RMSE = 70.47)
- **(b)** Full estimate (RMSE = 37.56)

Figure: Demand in pedestrian underpasses
Demand estimation: Conclusions

- estimation model for pedestrian OD demand in train stations
- within-day and natural day-to-day demand variation
- good agreement of case study results with tracking data
Outline

1. Case study
2. Demand estimation
3. Traffic assignment
4. Application and practical guidance
5. Conclusions
Traffic assignment: Overview

- route choice
 - mostly utility-based approaches [Dia71, CL98, HB04]
 - high maturity of available models

- network loading
 - wide range of approaches [Løv94, HM95, BA01, Hug02]
 - lack of accurate and efficient models [DDH13]
Traffic assignment: Overview

- route choice
 - mostly utility-based approaches [Dia71, CL98, HB04]
 - high maturity of available models

- network loading
 - wide range of approaches [Løv94, HM95, BA01, Hug02]
 - lack of accurate and efficient models [DDH13]

 input: ‘route demand’
 output: traffic conditions (travel times, density, . . .)
Framework

- discrete time
 - uniform time intervals
- discrete space
 - partitioning into areas
- demand
 - aggregate by time interval and route
 - pedestrian ‘groups’
Walking network and model principle

- area ξ: range of interaction
- stream λ: uni-directional flow
- node ν: flow valve

- flow on uni-directional stream $= \text{density} \times \text{velocity}$
- stream-based pedestrian fundamental diagram (next slide)
Pedestrian fundamental diagram

- stream-based fundamental diagram (SbFD) \[WLC^{+10}, XW15\]

\[v_{\lambda} = v_f \cdot \exp \left\{-\vartheta k_{\xi}^2 \right\} \prod_{\lambda' \in \Lambda_{\xi}} \exp \left(-\beta \left(1 - \cos \varphi_{\lambda,\lambda'} \right) k_{\lambda'} \right)\]

- isotropic reduction (Drake, 1967)
- reduction due to pair-wise interaction of streams
 \(v_f\): free-flow speed, \(k_{\{\xi,\lambda}\}\): density,
 \(\varphi_{\lambda,\lambda'}\): intersection angle, \(\vartheta, \beta\): parameters

- state-of-the-practice: Weidmann, 1992 \[Wei92\]

\[v_{\lambda} = v_f \left\{1 - \exp \left[-\gamma \left(\frac{1}{k_{\xi}} - \frac{1}{k_{\text{jam}}} \right)\right]\right\}\]

\(\gamma\): shape parameter, \(k_{\text{jam}}\): jam density
Case studies

- isotropic case studies
 - pedestrian underpass, Lausanne railway station
 - bottleneck experiment, Delft

- anisotropic case studies
 - cross-flow experiment, Berlin
 - counter-flow experiments, Hong Kong
Case studies

• isotropic case studies
 – pedestrian underpass, Lausanne railway station
 – bottleneck experiment, Delft

• anisotropic case studies
 – cross-flow experiment, Berlin
 – counter-flow experiments, Hong Kong
Cross-flow experiment (Plaue et al., 2014)
Cross-flow experiment: Results

Table: Performance of various fundamental diagrams

<table>
<thead>
<tr>
<th></th>
<th>Zero-Model</th>
<th>Drake</th>
<th>SbFD</th>
<th>Weidmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>1160.0</td>
<td>1101.0</td>
<td>1062.6</td>
<td>1098.8</td>
</tr>
<tr>
<td>v_f [m/s]</td>
<td>1.307 ± 0.005</td>
<td>1.308 ± 0.001</td>
<td>1.308 ± 0.006</td>
<td>1.332 ± 0.002</td>
</tr>
<tr>
<td>μ [-]</td>
<td>1.16 ± 0.03</td>
<td>1.39 ± 0.02</td>
<td>2.64 ± 0.41</td>
<td>2.05 ± 0.20</td>
</tr>
<tr>
<td>ϑ [m4]</td>
<td>0.139 ± 0.004</td>
<td>0.143 ± 0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β [m2]</td>
<td></td>
<td></td>
<td>0.300 ± 0.008</td>
<td></td>
</tr>
<tr>
<td>γ [m$^{-2}$]</td>
<td></td>
<td></td>
<td></td>
<td>1.76 ± 0.15</td>
</tr>
<tr>
<td>k_j [m$^{-2}$]</td>
<td></td>
<td></td>
<td></td>
<td>5.99 ± 0.61</td>
</tr>
</tbody>
</table>
Traffic assignment: Conclusions

- loading model for dynamic, multi-directional pedestrian flows
- explicit consideration of anisotropy
- accurate reproduction of travel times and density
Outline

1. Case study

2. Demand estimation

3. Traffic assignment

4. Application and practical guidance

5. Conclusions
Application and practical guidance

- application of modeling framework to Lausanne railway station
 - current usage
 - current level-of-service

- practical guidance for planning of rail access facilities
 - 6-step planning process [BW08]
Outline

1. Case study
2. Demand estimation
3. Traffic assignment
4. Application and practical guidance
5. Conclusions
Conclusions: Contributions

- rich data set of large Swiss train station
- demand estimation for pedestrian OD demand in train stations
- loading model for large, congested walking facilities
- case-study application and planning guidelines
Conclusions: Future research directions

• Data
 – new collection techniques, real sites

• Models
 – activity-based demand estimation
 – loading model for non-walking behavior

• Applications
 – crowd management (active and passive)
Thank you

PhD defense:

Modeling and estimation of pedestrian flows in train stations

Flurin S. Hänseler

– flurin.haenseler@epfl.ch

S. Buchmüller and U. Weidmann.
Handbuch zur Anordnung und Dimensionierung von Fussgängeranlagen in Bahnhöfen.

C. Y. Cheung and W. H. K. Lam.
Pedestrian route choices between escalator and stairway in MTR stations.

R. B. Dial.
A probabilistic multipath traffic assignment model which obviates path enumeration.

P. N. Daly, F. McGrath, and T. J. Annesley.
Pedestrian speed/flow relationships for underground stations.

G. Flötteröd and G. Lämmel.
Bidirectional pedestrian fundamental diagram.

R. L. Hughes.
A continuum theory for the flow of pedestrians.

S. P. Hoogendoorn, F. L. M. van Wageningen-Kessels, W. Daamen, and D. C. Duives.
Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena.
Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm.

Crowding in platform staircases of a subway station in China during rush hours.
A hybrid Petri nets-based simulation model for evaluating the design of railway transit stations.

W. H. K. Lam and C. Y. Cheung.
Pedestrian speed/flow relationships for walking facilities in Hong Kong.

G. G. Løvås.
Modeling and simulation of pedestrian traffic flow.

G. Rindsfüser and F. Klügl.
Agent-based pedestrian simulation: A case study of Bern Railway Station.

Bidirectional pedestrian stream model with oblique intersecting angle.

Analysis of subway station capacity with the use of queueing theory.
S. Xie and S. C. Wong.
A Bayesian inference approach to the development of a multidirectional pedestrian stream model.

Q. Zhang, B. Han, and D. Li.
Modeling and simulation of passenger alighting and boarding movement in Beijing metro stations.