Preliminary ideas for dynamic estimation of pedestrian origin-destination demand within train stations

Flurin Hänseler, Bilal Farooq, Michel Bierlaire

May 3, 2012
Context & Motivation

• Importance of pedestrian flows in transportation hubs for public transportation system as a whole
 – congestion of pedestrian facilities at peak hours
 – large increase in number of passengers

• Pedestrian flows key for level of service
 – performance: travel time, timetable stability
 – comfort: ‘degree of crowdedness’
 – safety: in case of evacuation, stampede

• Models needed for better understanding of pedestrian flows
 – optimize pedestrian facilities & their operation
Pedestrian flow modeling in train stations
Pedestrian flow modeling in train stations

Pedestrian OD demand (strategical)
Pedestrian flow modeling in train stations

Pedestrian OD demand (strategical)
Pedestrian route choice (tactical)
Pedestrian flow modeling in train stations

Pedestrian OD demand (strategical)
Pedestrian route choice (tactical)
Pedestrian dynamics (operational)
Pedestrian flow modeling in train stations

Pedestrian OD demand (strategical)
Pedestrian route choice (tactical)
Pedestrian dynamics (operational)

back coupling
Pedestrian origin-destination (OD) demand in train stations

- Pedestrian waves due to train arrivals or upcoming departures
 - OD demand fluctuations on a minute-by-minute basis
 - superposition of waves leading to congestion
 \[\implies\] high temporal resolution needed

- Literature
Mathematical framework of OD demand model

For centroids $i, j = 1, \ldots, R$ and discrete time $t = 1, \ldots, T$:

- $x_{i,j,t}$: pedestrian demand rate $i \rightarrow j$ at time t
- $y_{i,j,t}$: travel time $i \rightarrow j$ if leaving node i at time t

Structural equations for centroids i, j at time t:

Origin flow: $f_{i,t} = \sum_{j=1}^{R} x_{i,j,t}$

Destination flow: $g_{j,t} = \sum_{k=1}^{t} \sum_{i=1}^{R} x_{i,j,k} \Pr(y_{i,j,k} = t - k)$
Data sources for model calibration

- Passenger counts
- Train related data
Passenger turnover of a train

For a train z using a track adjacent to platform j:

- number of alighting passengers: $\phi_{j,z} = q_{j,z}o_{j,z} + \varepsilon_{j,z}$
- number of boarding passengers: $\pi_{j,z} = q_{j,z}p_{j,z} + \eta_{j,z}$

$q_{j,z}$: train capacity

$o_{j,z}, p_{j,z}$: fraction of people alighting/boarding (relative to capacity)

$\varepsilon_{j,z}, \eta_{j,z}$: random variables (r.v.) with known distribution
Pedestrian arrival/departure pattern on platform

Pedestrian arrival pattern on platform preceding train departure:

\[
\tilde{B}_p(\tilde{t}, \tilde{\gamma}, \tilde{\delta}, \tilde{t}_p) = \gamma = 5, \delta = 2
\]

\[
\int_{\tilde{t}_p}^{\tilde{t}} \tilde{B}_p(\tilde{u}, \tilde{\gamma}, \tilde{\delta}, \tilde{t}_p) d\tilde{u}
\]
Pedestrian arrival/departure pattern on platform

Beta distribution:

pattern preceding train departure: $\tilde{B}_p(\tilde{t}; \tilde{\gamma}, \tilde{\delta}, \tilde{t}_p)$

pattern following train arrival: $\tilde{B}_o(\tilde{t}; \tilde{\alpha}, \tilde{\beta}, \tilde{t}_o)$

Similarity assumption:

$$\tilde{B}_o(\tilde{t}; \tilde{\alpha}, \tilde{\beta}, \tilde{t}_o) \sim \tilde{B}_p(-\tilde{t}; \tilde{\gamma}, \tilde{\delta}, -\tilde{t}_p)$$

\tilde{t}: continuous time

\tilde{t}_p, \tilde{t}_o: time of train departure/arrival

$\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}, \tilde{\delta}$: shape parameters
Structural equations for train passenger flows

Overall train passenger flows:

arrival flow: \(d_{i,t} = \sum_{z=1}^{N_i} \phi_{i,z} B_o (t; \alpha_{i,z}, \beta_{i,z}, a_{i,z}) \)

departure flow: \(e_{j,t} = \sum_{z=1}^{N_j} \pi_{j,z} B_p (t; \gamma_{j,z}, \delta_{j,z}, b_{j,z}) \)

\(N_j \) : total number of trains docking on platform \(j \)

\(B_o(\cdot), B_p(\cdot) \) : discrete flow patterns corresponding to \(\tilde{B}_o, \tilde{B}_p \)

\(\{\alpha, \beta, \gamma, \delta\}_{j,z} \) : shape parameters (platform \(j \), train \(z \))

\(a_{j,z}, b_{j,z} \) : time of arrival and departure (ditto)
Measurement equations

- For nodes with passenger count data:
 - Origin flow: \(\hat{f}_{i,t} = f_{i,t} + \xi_{i,t} \quad \forall i \in F, t \)
 - Destination flow: \(\hat{g}_{j,t} = g_{j,t} + \nu_{j,t} \quad \forall j \in G, t \)

 \(F, G \): sets of centroids with outgoing/incoming flow counts

- For train platform nodes:
 - Passenger arrival flow: \(\hat{d}_{i,t} = f_{i,t} + \zeta_{i,t} \quad \forall i \in I, t \)
 - Passenger departure flow: \(\hat{e}_{j,t} = g_{j,t} + \lambda_{j,t} \quad \forall j \in J, t \)

 \(I, J \): sets of centroids used as arrival/departure platforms

 \(\xi_{i,t}, \nu_{j,t}, \zeta_{i,t}, \lambda_{j,t} \): random variables (r.v.)
Case Study: Renens CFF (simplified)
Case Study: Renens CFF (simplified)

Centroids

Intersection nodes
Case Study: Renens CFF (simplified)

\[\ell_{5,6,t} = \sum_{k=1}^{t} \left\{ \left(x_{1,3,k} + x_{1,4,k} \right) \cdot Pr(y_{1,5,k} = t - k) + \left(x_{2,3,k} + x_{2,4,k} \right) \cdot Pr(y_{2,5,k} = t - k) \right\} \]

\[\ell_{6,5,t} = \sum_{k=1}^{t} \sum_{m=3}^{4} \sum_{n=1}^{2} \left\{ x_{m,n,k} \cdot Pr(y_{m,6,k} = t - k) \right\} \]
Trip travel time and transition probability

Velocity-density relation: link flows \rightarrow link travel times

\[
\begin{array}{c|c|c|c|c|c|c}
\rho [1/m^2] & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
v [m/s] & 1.5 & 1 & 0.5 & 0.25 & 0.1 & 0.05 & 0.025 \\
\end{array}
\]

uniform flow (Weidmann, 1993)
Trip travel time and transition probability

Estimating the transition probability:

- average pedestrian velocity on link $m \rightarrow n$ at time t

$$v_{m,n,t} = v(c_{m,n}, \ell_{m,n,t}, \ell_{n,m,t}, \tau_{m,n})$$

- trip duration $i \rightarrow j$ along $L_{i,j}$

$$y_{i,j,t} = \sum_{(m,n) \in L_{i,j}} \frac{w_{m,n}}{v_{m,n}(t-1+y_{i,m,t})} \sim \Pr(y_{i,j,t} = k)$$

$c_{m,n}$: capacity of link $m \rightarrow n$ (m,n neighbors)

$w_{m,n}$: walking length of link $m \rightarrow n$

$\tau_{m,n,t}$: r.v. representing fluctuations in avg walking speed
Conclusion & Outlook

Preliminary methodology for dynamic estimation of pedestrian OD demand within a train station as a function of

- incoming, outgoing trains
 - train time table
 - track assignment
 - number of people getting on and off each train

Next steps:

- application on real case study
- consideration of intermediate activities (shopping, eating)
- coupling with pedestrian dynamics simulator
 \Rightarrow optimization studies
Thank you

‘Preliminary ideas for dynamic estimation of pedestrian origin-destination demand within train stations’

Flurin Hänseler, Bilal Farooq, Michel Bierlaire

Funded by SNF grant #200021-141099 ‘Pedestrian dynamics: flows and behavior’

– flurin.haenseler@epfl.ch