The importance of being random
— and how to cope with it
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Outline

How to capture uncertainty in a model
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Random numbers everywhere

| poputstion rin)

Listing Fair vehicle movement at the intersections as in Cetin [24].
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// Move vehicles across
for all nodes
while there are still eligible links
Select an eligible link randomly proportional to capacity
Mark link as non-eligible
while vehicle has arrived at end of link
AND vehicle can be moved according to capacity
AND there is space on destination link
move vehicle from source link to destination link
end while
end while // eligible links
end for // all nodes

intersections:

D. St

pgen, Dissertation, TUB 2009

ExpBetaPlanSelector selects a random plan according to a logit model: [11]

(4.5)

where p; is the probability for plan j to be selected and s; its current score. 3 is a

M. Balmer, Dissertation, ETHZ 2007

TRANSP-OR

¥ p setto 2.

M. Rieser, Dissertation, TUB 2010

A

ECOLE POLYTECHNIQUE
FEDIRALE DI LAUSANKE

4/20



Justification

e there is an input of our model, say X, we are uncertain about

— we model this uncertainty by assuming a distribution fx(x)
— we simulate this uncertainty by drawing realizations from fx(x)

e this results in a random output of our model, say Z = h(X)
e almost any question about the model can now be ...
... phrased as E{Z} :/h(x)fx(x)dx 7

R
1
. answer by E{Z}zﬁZh(x’) x"~fx,r=1...R
r=1

—

ECOLE POLYTECHINIOUE
FEDIRALE DI LAUSANKE

$TEANSF‘-DR

5/ 20



Implications

e random input = random output

a random simulation output represents uncertainty

e identify uncertainty in the output

— optimal: look at many simulation runs
— at least: look at many relaxed iterations

e model uncertainty in the output

— supplement averages with variances
— make histograms, do statistical tests, ...
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Outline

How to reduce the uncertainty of model outputs
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Basic idea

e the more we know, the less uncertain we are

— uncertainty = randomness
— knowledge = data

additional data reduces uncertainty in model outputs

e that data must be related to the model outputs

e here: count cars to reduce uncertainty about travel behavior
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Zurich scenario

e configuration

— network with 60492
links and 24 180 nodes

— 187484 travelers

— hourly vehicle counts
from 161 sensors

e calibrate

— route choice
— departure time choice
— mode choice

Grether et al., Report 08-10, TUB 2008 for every Slngle agent
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Combine model output with additional data

e model output: simulated travel behavior is uncertain
- V4 (i) is utility of travel plan i as perceived by driver n
— Pu(i) ~ exp(Vn(i)) is respective plan choice probability
¢ additional data: reduce uncertainty using traffic counts

— Yak is traffic count on link a in time step k
— o2, is variance of counting error

¢ making some assumptions and applying some math

Pn(i|{Yak}ak) ~ exp ( )+ Z }/ak )

akei

— qak is simulated flow on link a in time step k
— increases utility of more plausible plans
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Results, qualitatively

plain simulation with calibration
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Results, quantitatively

reproduction | validation comp. time
(-)? error (-)? error | until stationarity
plain simulation 103.6 103.6 181/2h (500it)
calibrated simulation 20.9 75.1 201/4h (500it)
relative difference -80% -28% +9%

e 10-fold cross-validation
e negligible computational overhead

e very stable results
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Discussion

e predictive power of adjusted plan choice distributions

— good within a day: plans apply to the whole day
— poor beyond this: plans are not (yet) linked across days

e what structural (long-term) information can we get out of this?

— essentially, we change the alternative specific constants (ASC)

Pu(il{yak}ak) ~ exp < ) + Z Yak — )

akei

— ASC of a plan is sum over ASC components per link
— questionable but possible: predict based on fixed link-ASC
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Outline

How to reduce the uncertainty of model inputs
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Basic idea

e the more we know, the less uncertain we are

— uncertainty = randomness
— knowledge = data

additional data reduces uncertainty in model inputs

e that data must be related to the model inputs

e here: count cars to reduce uncertainty about mode choice
model
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Scenario description

e same Zurich scenario as before

e utility function for logit plan choice

V(car—plan) = 20- (ﬂtravel,carttravel + 6acttact)
V(PT—pIan) = 20- (ﬂtravel,PTttravel + ﬂact tact)

-1 -1
where ﬂtravel,car =—6h and Bac: = +6h
e maximum likelihood estimation of Byayer pT
— have closed-form approximations of gradient & Hessian

— use Newton-Rhapson algorithm with MSA-like step size
— do one parameter update per iteration of the simulation
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Parameter evolution over iterations

0 1 Btravel PT
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Discussion

e final estimate Byl pr = —2.47

— deviation between different runs ~ 1072
- square root of inverse negative Hessian ~ 103

e measures of fit

— null log-likelihood ~ —60.2
— final log-likelihood ~ —54.6

e criticism

— many assumptions and approximations
— simulation noise everywhere
— a single parameter hardly explains the data
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Summary
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Summary

1. appropriate input randomness reveals uncertainty in the results
- fixing an input means to be perfectly sure about it
— looking at only one output realization ignores its uncertainty
2. additional data helps to reduce this uncertainty

— for both model inputs (parameters) and outputs
— this talk only considers traffic counts
— new data sources: vehicle identification, smart phones, ...

3. it is conceptually & computationally feasible to actually do this

— there are some theoretical results by now
— free software: transp-or2.epfl.ch/cadyts/
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Summary

1. appropriate input randomness reveals uncertainty in the results
- fixing an input means to be perfectly sure about it
— looking at only one output realization ignores its uncertainty
2. additional data helps to reduce this uncertainty
— for both model inputs (parameters) and outputs
— this talk only considers traffic counts
— new data sources: vehicle identification, smart phones, ...
3. it is conceptually & computationally feasible to actually do this

— there are some theoretical results by now
— free software: transp-or2.epfl.ch/cadyts/

Thank you for your attention.
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