Congestion in a competitive world: A study of the impact of competition on airline operations

Niklaus Eggenberg (EPFL) Lavanya Marla (MIT)

Outline

- European vs US airline industry
- Airline Scheduling in the US
- Issues in the current situation
- Case study: why airlines won't reduce frequency using PODS (revenue management simulator)

Actual State

	EUROPE	USA		
Planning	Slot Owning	Free Scheduling*		
On the day	Global Traffic Control	Global Traffic Control		

^{*} except JFK, EWR, LGA, ORD and DCA

Some Numbers for the US

- Total profit in 2007 \$5.6 Billion (< 2%)
- Total delay in 2008 4.3 Mio hours
- Delay costs in 2008 \$41 Billion
 - \$19 Billion additional operating costs
 - □ \$12 Billion passengers' value of time
 - \$10 Billion spill out to other industries
- Additional tons of carbon dioxide 7.1 Mio

(0.12% of total US emission)

Situation is getting worse

- Yearly increase of 2.5% flights/year until 2025
- Each 1% additional flights generates 5% additional delays

Issues and open questions

- Will airlines reduce frequency by their own?
- Are external regulations required?
 - What should the regulations be?
 - How to get airlines involved?
 - How to guarantee fairness?
- Are regulations applicable, at what cost?

US Airline Scheduling Process

Case Study

- Single OD market
 - ☐ 1440 miles
 - □ 3.39 hours block time
 - 6 fare classes
- 2 Competing airlines (A1 and A2)
 - ☐ 5 flights per day
 - 100 seats per flight

- → A2 inherits some additional revenue for free, but not all what A1 loses
- A2 cannot inherit all passengers left over by A1 with no response
- A1's loss mitigated by re-timing increase of total capacity
- Marginal revenue for passengers is increased for both airlines (consequence of revenue management)

No Competitive Response (10-13)

- Retiming only (10)
 - retiming only affects revenue
 - not sensitive to small retiming gaps
 - Poor retiming decision: direct revenue transfert of ~2.5%
- Frequency reduction (I1-I3)
 - ☐ Frequency reduction of A1 higher than revenue loss
 - A2 gains less than A1 loses
 - ☐ A1 recaptures loss by retiming (I2) and increasing capacity (I3)

Competitive Response by A2

- A2's 20% capacity increase is equivalent to 15.2% revenue increase in R1
- □ R3: Global number of pax is increased by 2.5% when total capacity is increased by 5%
- R3: A2 with a 0% capacity increase and 20% frequency increase gets 6% more revenue
- R3: Global revenue decreases by 1.6%, total capacity by 5%
- High-frequency-low-capacity has better yield than low-frequency-high-capacity

Competitive Response (R1-R3)

- Competitive response to cut only (R1)
 - □ A2 gets a high profit, A1 loses a lot of market share
- A1 increases capacity by 12.5% (R2)
 - ☐ A1 recaptures 44% of the pax lost in R1
 - ☐ A1 could only recapture 29% of the lost revenue in R1
 - A2 loses market share w.r.t. R1
- A2 with high-frequency-low-capacity (R3)
 - A2 gains only few passengers but increases revenue to a greater extent
 - ☐ A1 cannot compete: they lose more revenue (9%) than passengers (8%)

- A1 always has higher load factor, except when retiming only (I1) due to:
 - Lower capacity (all scenarios)
 - Recapturing more lower fare class passengers left over by A2, which focuses on higher fares
- A1 reduces load factor by 2.8% when increasing capacity by 12.5% in R2
- A2's load factor increases by 6.5% when reducing capacity by 17% from R2 to R3

- Revenue per seat decreases significantly when A2 increases capacity (R1,R2) (A2 has over-capacity)
- Highest revenue per seat is achieved by A1 when cutting one flight and retiming only (I2)
- R3: revenue per seat is clearly better for A2 than A1

Total Revenue

- With lower-capacity-higher frequency, A2 has 9.7% more business passengers (R3 compared to R2)
- In R3, A2 transports 10.7% more passengers than A1
- A1 loses 11.8% of business passengers in R3
- In R3, A1 transports 7.9% less passengers in total, A2 only 1.8% more
- Revenue is made by pax type, not pax number

Fare class loads for airline A1

- When lower capacity, get more pax in fare classes 4 and 5 for less in class
 6 (lowest fare class)
- When lower capacity, empty seats decreases both absolutely and relatively
- Fare classes 1 and 2 are have lower variability than other classes

Fare class loads for airline A2

- When larger capacity, get less pax in fare classes 4 and 5 for more in class
 6 (lowest fare class)
- I1 and I2: gain made by higher fare classes, not total number of pax
- R1-R3: High fare classes (1 and 2) have larger number of pax when higher frequency

- In R3, A2 gets more high fare class pax than A1
- Low fare class pax are decrease for both A1 and A2
- Global revenue decreased by 1.5%, total capacity decreased by 5%

Individual Flights A1

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Individual Flights A2

Considering operating costs

# Seats	Block-hour cost	Cost / departure	Cost / pax	Overhead	Distribution
75	2000	700	37	15%	9%
100	2500	800	37	15%	9%
125	3000	900	37	15%	9%

- Economies of scales for block-hour costs with respect to number of seats
- Larger planes have higher departure costs
- Cost per passenger is constant

Considering operating costs(2)

- A1 makes more profit when A2 adds a flight with 100 seats (R1-R2)
- Added flight by A2 always has negative profit (1% to 10% loss)
- R3: A2 increases profit by using smaller planes by 59%
- I1: highest profits for A2 when A1 cuts 1 flight only
- When cutting 1 flight, all flights of A1 have positive profit

Big picture

- A2 gains from A1's frequency reduction even without response
- A1 does not lose as much as it cuts frequency
- Revenue management can mitigate losses
- Higher frequency allows for better match of high-fare demand profiles
- Add capacity is increasing revenue, but not necessarily increasing profit

Conclusions

- Airline congestion in the US is a major issue
- Airlines benefit from increased frequency
- Airlines have no interest in reducing voluntarily their frequency
- Need external regulation to ensure quality of service

Thank you!

