PhD thesis

Activity choice modeling for pedestrian facilities

Antonin Danalet
Outline

Motivation: Understanding pedestrian demand

Detecting activity-episode sequences

A path choice approach to activity modeling

Location choice with panel effect

Conclusion and future work
Outline

Motivation: Understanding pedestrian demand

Detecting activity-episode sequences

A path choice approach to activity modeling

Location choice with panel effect

Conclusion and future work
New interest in pedestrian modeling

- Urban growth and its pressure on pedestrian facilities
- Availability of new tracking data
In airports...

- +38% air passengers (2008-2013)
- Surveying [LUS14], space syntax [KBM14]
In hospitals...

- US: Hospital-building and renovation boom [HCSL08]
- Time use of nurses using RFID [HCSL08]
In museums...

- Louvre: +35% visitors (2004-2014)
- Understanding congestion using Bluetooth [YSR⁺14]
In train stations...

- Utrecht Central Station: +14% visitors by 2020
- Activity location choice using WiFi and Bluetooth [Ton14]
Challenges of pedestrian facilities

- Knowing the number of visitors
- Determining the source of congestion
- Localizing points of interest
- Modifying/building new facilities
- Defining timetables
Data from communication antennas

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Large sample size</td>
<td>• No socioeconomics</td>
</tr>
<tr>
<td>• Low cost</td>
<td>• Not representative</td>
</tr>
<tr>
<td>• Low privacy risk</td>
<td>• Privacy risk</td>
</tr>
<tr>
<td>• No recall bias</td>
<td>• Low frequency</td>
</tr>
<tr>
<td>• No need to distribute devices</td>
<td>• Low precision</td>
</tr>
<tr>
<td>• Tracking non-travelers</td>
<td>• No stops</td>
</tr>
<tr>
<td>• Full coverage of the facility</td>
<td>• No activity purpose</td>
</tr>
</tbody>
</table>
Goal: Understanding pedestrian demand

• Where, when and for how long do pedestrians perform activities in pedestrian facilities?
• Based on communication network traces from existing antennas
Activity path approach

Pre-processing

Activity-episode sequence detection

Modeling

Activity path choice model

Location choice model
Activity-episode sequence detection

• Explicit modeling of the imprecision in the measure
• Usage of prior knowledge of the infrastructure
• Avoidance of the pingpong effect
Activity-path choice model

- No tours, no priorities
- Managing large choice sets
- Unique utility for activity type, time-of-day and duration choices
Location choice model

• Including panel data
• Correcting for serial correlation
More details

- Introduction: Chapter 1 in [Dan15b]
- Literature review: Chapter 2 in [Dan15b]
Outline

Motivation: Understanding pedestrian demand

Detecting activity-episode sequences

A path choice approach to activity modeling

Location choice with panel effect

Conclusion and future work
Data requirement

- Required
 - Localization data with full coverage of the facility
 - Semantically-enriched routing graph for pedestrians
- Not required but often available information
 - Potential attractiveness measure
Data requirement: Localization
Data requirement: Map (POI + network)
Potential attractivity measure

For individual n, point of interest x, start and end times t^{-} and t^{+}:

$$S_{x,n}(t^{-}, t^{+}) = \int_{t=t^{-}}^{t=t^{+}} \delta_{x,n}(t) \cdot att_{n}(x, t) dt$$

with

- Time constraints $\delta_{x,n}$
 (e.g., train or class schedules, opening hours)
- Destination attractivity $att_{n}(x, t)$
 (e.g., classroom, platform, scene aggregate occupancy)
Data requirement: Potential attractiveness

Cumulative number of students in class by week based on class schedules
Methodology

Input
- Localization measurement
- Semantically-enriched routing graph
- Potential attractivity measure

Output
- Set of candidate activity-episode sequences associated with the likelihood to be the true one
Probabilistic measurement model: a Bayesian approach

\[
P(a_1:\psi | \hat{m}_{1:J}) \propto P(\hat{m}_{1:J} | a_1:\psi) \cdot P(a_1:\psi)
\]

with
- measurement \(\hat{m} = (\hat{x}, \hat{t}), (\hat{m}_1, \hat{m}_2, ..., \hat{m}_j, ..., \hat{m}_J) = \hat{m}_{1:J} \)
- activity episode \(a = (x, t^-, t^+), (a_1, a_2, ..., a_\psi, ..., a_\psi) = a_{1:\psi} \)
Measurement likelihood

\[
P(\hat{m}_{1:J} | a_{1:J}) = \prod_{\psi=1}^{\Psi} P(\hat{m}_{1:J}^{\psi} | a_{\psi}) \quad \Leftrightarrow \quad \text{Independence between activities}
\]

\[
= \prod_{\psi=1}^{\Psi} \prod_{j=1}^{J} P(\hat{m}_{j}^{\psi} | a_{\psi}) \quad \Leftrightarrow \quad \text{Independence between measurements}
\]

\[
= \prod_{\psi=1}^{\Psi} \prod_{j=1}^{J} P(\hat{x}_{j}^{\psi} | x_{\psi}) \quad \Leftrightarrow \quad \text{No time measurement error}
\]
Prior: Potential attractivity measure

\[P(a_{1:\psi}) = \prod_{\psi=1}^{\psi} P(a_{\psi}) \]

\[= \prod_{\psi=1}^{\psi} P(x_{\psi}, t_{\psi}^-, t_{\psi}^+) \]

\[= \prod_{\psi=1}^{\psi} \frac{S_{x_{\psi}, n(t_{\psi}^-, t_{\psi}^+)}}{\sum_{x \in POI} S_{x, n(t_{\psi}^-, t_{\psi}^+)} } \]
Probabilistic measurement model: a Bayesian approach

$$P(a_1:\psi | \hat{m}_{1:J}) \propto P(\hat{m}_{1:J} | a_1:\psi) \cdot P(a_1:\psi)$$
Generation of activity-episode sequences
Generation of activity-episode sequences

with \(tt_{x_j, x_{j+1}} \) the travel time from \(x_j \) to \(x_{j+1} \)
Generation of activity-episode sequences

- x_j^1
- x_j^2
- x_j^3
- x_{j+1}^1
- x_{j+1}^2
- x_{j+1}^3
- x_{j+1}^4
Intermediary measurements

Eliminate intermediary measurements if

\[E(t^+) - E(t^-) < T_{\text{min}} \]

since we generate an activity episode at each measurement.
We keep L (here, $L = 5$) most likely activity-episode sequences.
Results: me on EPFL campus, raw data
Results: me on EPFL campus, truth

Legend
Pedestrian network
Destinations
Shortest path

1: Classroom
2, 4, 6: Author’s office
5: Cafeteria
7: Metro stop
Restaurant
Results: me on EPFL campus, model, $L = 1$
Results: me on EPFL campus, model, $L = 100$
Results: an employee on EPFL campus, $L = 20$
Results: an computer science student, $L = 20$
Results: an employees?, \(L = 20 \)
Detection: Results for full population

- 3 activity episodes on average
- 1h37 on each activity
- Devices detected in restaurant during lunch break (see figure)
More details

- Article: [DFB14]
- Chapter 3 in [Dan15b]
Outline

Motivation: Understanding pedestrian demand

Detecting activity-episode sequences

A path choice approach to activity modeling

Location choice with panel effect

Conclusion and future work
Modeling assumption

• Sequential choice:
 1. activity type, sequence, time of day and duration
 2. destination choice conditional on 1.
• Motivations:
 – Behavioral: precedence of activity choice over destination choice [BBA01, AT04, HB04, AZBA12, KR13]
 – Dimensional: destinations × time × position in the sequence is not tractable
Observations: activity patterns in a transport hub

Activity types

Waiting for the train
(on platform 9)

Having a tea
(in Starbucks)

Buying a ticket
(at the machine)

7:40 7:43 7:48 8:01 8:03 8:12
Activity network

Activity types

A_1

A_2

\vdots

A_k

Activity network

1 2 ... T

Time units
Activity path

Convenience store
Fast food
Cafe
Service
Walking
Not in the train station
Sampling strategies for choice set generation

- Simple random sampling (SRS)
- Importance sampling using Metropolis-Hastings algorithm [FB13] and strategic sampling [LK12]
Metropolis-Hastings sampling of paths

[FB13]
Metropolis-Hastings sampling of paths

- Sample paths from given distribution, without full enumeration
- To be defined:
 - Target weight: Also with non-node-additive utility
 - Proposal distribution:

\[
P_{\text{insert}} = \frac{e^{-\tilde{\mu} \delta_{SP}(\text{origin}, v) + \delta_{SP}(v, \text{destination})}}{\sum_w e^{-\tilde{\mu} \delta_{SP}(\text{origin}, w) + \delta_{SP}(w, \text{destination})}}
\]

Relies on shortest paths, node-additive cost.
Strategic sampling

- Target weight: previously estimated model
- Proposal distribution: previously estimated model using only time-of-day preferences (node-additive)
Utility structure

- Utility of activity pattern:
 - Node utility $V(A_k, t)$
 - time-of-day preferences
 - Activity-episode utility $V(a)$
 - satiation effects: decreasing marginal utility, $\eta \ln(\text{duration})$
 - scheduling constraints: schedule delay
 - Activity path utility $V(\Gamma)$
 - primary activity
 - number of episodes

- Sampling correction

$$\mu\left(\sum_{k=1}^{K} \sum_{\tau=1}^{T} V(A_{k,\tau}) + \sum_{a \in A_{1:T}} V(a) + V(\Gamma)\right) + \ln \frac{k_{\Gamma n}}{b(\Gamma)}$$
Case study: pedestrians on EPFL campus

• 13,000 people per day
• 8 activity types:
 – classrooms,
 – shops,
 – offices,
 – restaurant,
 – library,
 – lab,
 – other and
 – not being detected
• 12 time units in the activity network, from 7am to 7pm
Proposal distribution (using simple random sampling)

<table>
<thead>
<tr>
<th>Description</th>
<th>Coeff. estimate</th>
<th>Robust Asympt. std. error</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>β NA, 17-19, employees</td>
<td>0.263</td>
<td>0.0302</td>
<td>8.70</td>
</tr>
<tr>
<td>β NA, 14-17, students</td>
<td>-0.222</td>
<td>0.191</td>
<td>-1.16</td>
</tr>
<tr>
<td>β NA, 7-8, students</td>
<td>0.349</td>
<td>0.0281</td>
<td>12.44</td>
</tr>
<tr>
<td>β NA, 7-9, employees</td>
<td>0.326</td>
<td>0.0262</td>
<td>12.43</td>
</tr>
<tr>
<td>β NA, 17-19, students</td>
<td>1.14</td>
<td>0.187</td>
<td>6.09</td>
</tr>
<tr>
<td>β classroom, 12-14, students</td>
<td>-0.336</td>
<td>0.337</td>
<td>-1.00</td>
</tr>
<tr>
<td>β classroom, 7-12, employees</td>
<td>-0.723</td>
<td>0.397</td>
<td>-1.82</td>
</tr>
<tr>
<td>β classroom, 7-12, students</td>
<td>0.598</td>
<td>0.262</td>
<td>2.28</td>
</tr>
<tr>
<td>β library, 14-19, employees</td>
<td>-0.624</td>
<td>0.553</td>
<td>-1.13</td>
</tr>
<tr>
<td>β library, 12-14, employees</td>
<td>-0.575</td>
<td>0.481</td>
<td>-1.20</td>
</tr>
<tr>
<td>β library, 7-12, employees</td>
<td>-1.57</td>
<td>0.508</td>
<td>-3.09</td>
</tr>
<tr>
<td>β office, 14-19, employees</td>
<td>1.41</td>
<td>0.246</td>
<td>5.73</td>
</tr>
<tr>
<td>β office, 7-12, employees</td>
<td>1.12</td>
<td>0.228</td>
<td>4.92</td>
</tr>
<tr>
<td>β restaurant, 14-19, students</td>
<td>-0.410</td>
<td>0.185</td>
<td>-2.21</td>
</tr>
<tr>
<td>β restaurant, 12-14, employees</td>
<td>0.136</td>
<td>0.0259</td>
<td>5.26</td>
</tr>
<tr>
<td>β restaurant, 12-14, students</td>
<td>0.665</td>
<td>0.286</td>
<td>2.32</td>
</tr>
</tbody>
</table>

...

Number of observations = 1087
Number of estimated parameters = 43
\(\mathcal{L}(\beta_0) = -5016.636 \)
\(\mathcal{L}(\hat{\beta}) = -453.225 \)
\(\rho^2 = 0.910 \)
\(\overline{\rho}^2 = 0.901 \)
Target weight (using simple random sampling)

<table>
<thead>
<tr>
<th>Description</th>
<th>Coeff. estimate</th>
<th>Robust Asympt. estimate std. error</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_{\text{library 7-12, employees}}$</td>
<td>-2.08</td>
<td>0.422</td>
<td>-4.93</td>
</tr>
<tr>
<td>$\beta_{\text{office 7-12, 14-19, employees}}$</td>
<td>1.69</td>
<td>0.393</td>
<td>4.30</td>
</tr>
<tr>
<td>$\beta_{\text{restaurant 12-14, employees}}$</td>
<td>1.22</td>
<td>0.502</td>
<td>2.43</td>
</tr>
<tr>
<td>$\beta_{\text{shop 12-14, students}}$</td>
<td>-7.36</td>
<td>1.24</td>
<td>-5.92</td>
</tr>
<tr>
<td>$\beta_{\text{shop 7-12, 14-19, students}}$</td>
<td>-1.16</td>
<td>0.538</td>
<td>-2.16</td>
</tr>
<tr>
<td>$\beta_{\text{NA 7-8, students}}$</td>
<td>4.27</td>
<td>0.995</td>
<td>4.29</td>
</tr>
<tr>
<td>$\beta_{\text{NA 8-12, students}}$</td>
<td>1.40</td>
<td>0.498</td>
<td>2.82</td>
</tr>
<tr>
<td>$\beta_{\text{NA 17-19, students}}$</td>
<td>1.75</td>
<td>0.568</td>
<td>3.08</td>
</tr>
<tr>
<td>$\beta_{\text{NA 9-17, employees}}$</td>
<td>1.43</td>
<td>0.296</td>
<td>4.84</td>
</tr>
<tr>
<td>$\beta_{\text{NA 7-9, 17-19, employees}}$</td>
<td>3.34</td>
<td>0.554</td>
<td>6.02</td>
</tr>
<tr>
<td>$\eta_{\text{Office, Lab, Classroom}}$</td>
<td>5.22</td>
<td>0.764</td>
<td>6.83</td>
</tr>
<tr>
<td>$\eta_{\text{Restaurant, Library, Other}}$</td>
<td>7.85</td>
<td>1.11</td>
<td>7.10</td>
</tr>
<tr>
<td>η_{Shop}</td>
<td>7.33</td>
<td>0.894</td>
<td>8.20</td>
</tr>
<tr>
<td>η_{NA}</td>
<td>2.75</td>
<td>0.393</td>
<td>7.00</td>
</tr>
<tr>
<td>$\beta_{3+ \text{ lab episodes}}$</td>
<td>-5.03</td>
<td>0.952</td>
<td>-5.28</td>
</tr>
<tr>
<td>$\beta_{3+ \text{ resto episodes}}$</td>
<td>-2.50</td>
<td>0.759</td>
<td>-3.29</td>
</tr>
</tbody>
</table>

Number of observations = 1087
Number of estimated parameters = 22

$\mathcal{L}(\beta_0) = -5016.636$

$\mathcal{L}(\hat{\beta}) = -47.218$

$\rho^2 = 0.991$

$\bar{\rho}^2 = 0.986$
Model using strategic sampling

<table>
<thead>
<tr>
<th>Description</th>
<th>Coeff. estimate</th>
<th>Robust Asympt. std. error</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta \text{ classroom 7-12, students})</td>
<td>0.478</td>
<td>0.238</td>
<td>2.01</td>
</tr>
<tr>
<td>(\beta \text{ restaurant 12, students})</td>
<td>2.69</td>
<td>0.527</td>
<td>5.10</td>
</tr>
<tr>
<td>(\beta \text{ shop 14-19, students})</td>
<td>1.46</td>
<td>0.343</td>
<td>4.27</td>
</tr>
<tr>
<td>(\beta \text{ NA 7-12, students})</td>
<td>2.33</td>
<td>0.285</td>
<td>8.17</td>
</tr>
<tr>
<td>(\beta \text{ NA 17-19, students})</td>
<td>2.83</td>
<td>0.343</td>
<td>8.24</td>
</tr>
<tr>
<td>(\beta \text{ NA 7-9, 17-19, employees})</td>
<td>2.91</td>
<td>0.303</td>
<td>9.60</td>
</tr>
<tr>
<td>(\eta \text{ office, lab, classroom})</td>
<td>-6.85</td>
<td>0.379</td>
<td>-18.09</td>
</tr>
<tr>
<td>(\eta \text{ restaurant, library, other})</td>
<td>-6.58</td>
<td>0.360</td>
<td>-18.31</td>
</tr>
<tr>
<td>(\eta \text{ shop})</td>
<td>-3.72</td>
<td>0.278</td>
<td>-13.40</td>
</tr>
<tr>
<td>(\eta \text{ NA})</td>
<td>-7.63</td>
<td>0.541</td>
<td>-14.12</td>
</tr>
<tr>
<td>(\beta_0 \text{ restaurant episode})</td>
<td>4.11</td>
<td>0.365</td>
<td>11.28</td>
</tr>
<tr>
<td>(\beta_0 \text{ classroom episodes, employees})</td>
<td>10.3</td>
<td>0.887</td>
<td>11.65</td>
</tr>
<tr>
<td>(\beta_1 \text{ shop episodes})</td>
<td>-3.87</td>
<td>0.573</td>
<td>-6.76</td>
</tr>
<tr>
<td>(\beta_2+ \text{ shop episodes})</td>
<td>-3.49</td>
<td>1.08</td>
<td>-3.24</td>
</tr>
<tr>
<td>(\beta_0 \text{ library episode, employees})</td>
<td>2.72</td>
<td>0.335</td>
<td>8.10</td>
</tr>
<tr>
<td>(\beta_0 \text{ library episode, students})</td>
<td>4.77</td>
<td>0.495</td>
<td>9.64</td>
</tr>
<tr>
<td>(\beta_0 \text{ library episode, students})</td>
<td>4.77</td>
<td>0.495</td>
<td>9.64</td>
</tr>
</tbody>
</table>

Number of observations = 1087
Number of estimated parameters = 39

\[\mathcal{L}(\beta_0) = -5016.636 \]
\[\mathcal{L}(\hat{\beta}) = -400.633 \]
\[\rho^2 = 0.920 \]
\[\bar{\rho}^2 = 0.912 \]
Validation

Predicted probabilities for the chosen alternative

Probabilities for the chosen alternative

Simple random sampling

Strategic sampling
More details

- Conference proceeding: [DB15]
- Chapter 4 in [Dan15b]
Outline

Motivation: Understanding pedestrian demand

Detecting activity-episode sequences

A path choice approach to activity modeling

Location choice with panel effect

Conclusion and future work
Goal

- Model location choice conditional on an activity type
- Adapted to panel data
Static model

\[U_{int} = V_{int} + \varepsilon_{int} \]

Ignores two aspects:
- Dynamics
- Serial correlation
Dynamic model without agent effect

\[U_{int} = V_{int} + \rho y_{in(t-1)} + \varepsilon_{int} \]

Assumes

- Dynamic process of order one
- Location-specific dependence
- Previous choice \(y_{in(t-1)} \) independent of error term \(\varepsilon_{int} \)
Relaxing the independence assumption of error terms

- Agent effect α_{in}: time-invariant factor ("between" individuals variability)
- Unobserved heterogeneity ε'_{int}: short-term variation of probabilities ("within" an individual variability)

$$U_{int} = V_{int} + \rho y_{in(t-1)} + \alpha_{in} + \varepsilon'_{int}$$

Endogeneity issue:
- $y_{in(t-1)}$ and α_{in} are correlated
An approach by Wooldridge [Woo05]

For activity location i, individual n, at time t:

\[
U_{int} = V_{int} + \rho \gamma_{in}(t-1) + \alpha_{in} + \varepsilon_{int}
\]

\[
\alpha_{in} = a + b \gamma_{in0} + c' \bar{x}_n + \xi_{in}
\]

\[
\sim \mathcal{N}(0; \Sigma_{\alpha})
\]

Endogeneity issue solved [Woo05]
3 different models

<table>
<thead>
<tr>
<th>Static model</th>
<th>Dynamic model without agent effect</th>
<th>Dynamic model with agent effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho = 0$</td>
<td>$\rho \neq 0$</td>
<td>$\rho \neq 0$</td>
</tr>
<tr>
<td>$a, b, c, \sigma^2_\alpha = 0$</td>
<td>$a, b, c, \sigma^2_\alpha = 0$</td>
<td>$a, b, c, \sigma^2_\alpha \neq 0$</td>
</tr>
</tbody>
</table>
Case study: EPFL catering locations
Two specifications of the agent effect

- First choice
 \[\alpha_{in} = a + by_{in0} + \xi_n \]

- First choice and frequency
 \[\alpha_{in} = a + by_{in0} + cy_{int}^{count} + \xi_n \]
 \[\sum_{t'=1}^{t-1} I(y_{int'}) \]
4 models estimated

<table>
<thead>
<tr>
<th>Static model</th>
<th>Dynamic model without agent effect</th>
<th>Dynamic model with agent effect correction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First choice</td>
<td>First choice and frequency</td>
</tr>
<tr>
<td>$\rho = 0$</td>
<td>$\rho \neq 0$</td>
<td>$\rho \neq 0$</td>
</tr>
<tr>
<td>$a = 0$</td>
<td>$a = 0$</td>
<td>$a \neq 0$</td>
</tr>
<tr>
<td>$b = 0$</td>
<td>$b = 0$</td>
<td>$b \neq 0$</td>
</tr>
<tr>
<td>$c = 0$</td>
<td>$c = 0$</td>
<td>$c \neq 0$</td>
</tr>
<tr>
<td>$\sigma_{\alpha} = 0$</td>
<td>$\sigma_{\alpha} = 0$</td>
<td>$\sigma_{\alpha} \neq 0$</td>
</tr>
</tbody>
</table>
Estimation results

- **Distance** has a **negative** impact
- **Yearly evaluation** has a **positive** impact
- **Beer after 14:00** has a **positive** impact
- **Cost** has a **negative** impact
- **Dinner** has a **positive** impact
- **Capacity** has a **positive** impact
Likelihood ratio tests

<table>
<thead>
<tr>
<th>Static model</th>
<th>Dynamic model without agent effect</th>
<th>Dynamic model with agent effect correction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First choice</td>
<td>First choice and frequency</td>
</tr>
<tr>
<td>354.003 (> 5.99)</td>
<td>920.354 (> 58.12)</td>
<td>16.172 (> 5.99)</td>
</tr>
</tbody>
</table>
Validation

<table>
<thead>
<tr>
<th></th>
<th>Predicting last observations based on past observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Static model</td>
</tr>
<tr>
<td>Sum of the squares of the errors</td>
<td>232.95</td>
</tr>
</tbody>
</table>
Elasticities to price

- Static model
 - Employees
 - Students

- Dynamic model without agent effect
 - Employees
 - Students

- Dynamic model with agent effect correction: First choice
 - Employees
 - Students

- Dynamic model with agent effect correction: First choice and frequency
 - Employees
 - Students
Forecasting: opening a new catering location

Nesting structure with the most similar alternative

- Nesting parameter $\theta = 1$: logit model, independent error terms
- Nesting parameter $\theta \to \infty$: perfectly correlated error terms
Forecasting: opening a new catering location

Frequency of visits for the new catering destination

- $\theta = 1$
- $\theta = 2$
- $\theta = 5$
- $\theta = 10$
- Point-of-sale data

Graph showing the frequency of visits over different models and agent effect corrections.
Outline

Motivation: Understanding pedestrian demand

Detecting activity-episode sequences

A path choice approach to activity modeling

Location choice with panel effect

Conclusion and future work
Activity-episode sequence detection

- Explicit modeling of the imprecision in the measure
- Usage of prior knowledge of the infrastructure
- Avoidance of the pingpong effect
Activity-path choice model

- No tours, no priorities
- Managing large choice sets
- Unique utility for activity type, time-of-day and duration choices
Location choice model

- Including panel data
- Correcting for serial correlation
Limitations

• Activity purpose is extracted from map data
• No mode detection
• No congestion
Future work

- Congested case study
- Include the uncertainty from detection in modeling
- Metropolis-Hastings algorithm for the sampling of activity paths
- More complex correlation structure for the choice of an activity path
- Include other sources of endogeneity (group, queue)
Thank you

PhD thesis:
Activity choice modeling for pedestrian facilities
Antonin Danalet

– antonin.danalet@epfl.ch

Antonin Danalet.

Antonin Danalet.
Activity choice modeling for pedestrian facilities.

Antonin Danalet and Michel Bierlaire.
Importance sampling for activity path choice.
In 15th Swiss Transport Research Conference (STRC), Monte Verità, Ascona, Switzerland, 2015.

Ann Hendrich, Marilyn P Chow, Boguslaw a Skierczynski, and Zhenqiang Lu.
A 36-hospital time and motion study: how do medical-surgical nurses spend their time?

Sofia Kalakou, Michel Bierlaire, and Filipe Moura.
Effects of terminal planning on passenger choices.
In *14th Swiss Transport Research Conference (STRC)*, Monte Verità, Ascona, Switzerland, 2014.

Privacy issues in this thesis

• EPFL ethics committee:
 – “No personal identifier when sharing data”
• In practice:
 – We have no access to MAC addresses in our dataset
 – The dataset is public [Dan15a]