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Introduction

Context

Dantzig-Wolfe (DW) reformulation of combinatorial
problems

Novel idea

Develop a framework in which a combinatorial problem is
solved starting from a partial compact formulation, with the
same approach used in column generation (CG) for the
restricted extensive formulation, obtaining a partial
restricted master problem.

The partial restricted master problem is called later on Partial Master Problem
(PMP).



Introduction

Algorithm 1: Two-stage column generation

repeat
repeat

generate variables for partial master problem (CG1)
until until optimal PMP ;
generate variables for partial compact problem (CG2)

until until optimal MP ;



Motivation

Many problems exhibit a compact formulation with many variables
(possibly an exponential number) which results in an unmanageable
associated pricing problem, when the extensive formulation is obtained
through DW.

In particular we have identified the following real-world problems:

TBAP with QC Assignment in maritime container terminals

VRP with Discrete Split Delivery

Field Technician Scheduling Problem

Routing helicopters for crew exchanges on off-shore locations



TBAP with QC assignment in container terminals

Giallombardo, Moccia, Salani & Vacca (2008)

Problem description

Tactical Berth Allocation Plan (TBAP): assignment
and scheduling of ships to berths;
Quay-Cranes (QC) assignment: a QC profile (number
of QCs per shift) is assigned to each ship;
feasible profiles can vary in length (number of shifts
dedicated to the ship) and in size (number of QCs
dedicated to the ship in each active shift);
time windows on ship arrival and on berth availabilities.

Objective

Maximize the value of chosen profiles.



VRP with Discrete Split Delivery

Ceselli, Righini & Salani (2007), Nakao & Nagamochi (2007)

Problem description

variant of VRP with split delivery;
each customer demand is represented by one or more
orders which consist of a set of items;
demand can be split (discretized) but items cannot;
some combinations of items are not allowed because of
incompatibilities between items and vehicles, items and
locations, etc.

Objective

Minimize the total travel costs.



Field Technician Scheduling Problem

Xu & Chiu (2001)

Problem description

different types of jobs which require different skills;
each technician is specialized in a field with certain
skills;
time windows on job starting and completion;
assignment problem (jobs to technicians) + scheduling
problem, where the duration of a job depends on the
assignment.

Objective

Maximize the number of jobs completed within a time
frame.



Crew exchanges on off-shore locations

Sierksma & Tijssen (1998)



Modeling

T o  e a c h  s u b s e t  i s  a s s o c i a t e d :
-  a  d e m a n d  f r a c t i o n

-  a  s e r v i c e  t i m e



VRP with Discrete Split Delivery

G = (V ,E ) complete graph with V = {0}∪N, (cij , tij) ∀(i , j) ∈ E ;

N : set of customers {1, ...,n};
K : set of vehicles (capacity Q);

R : set of items; R =
[
i∈N

Ri , Ri ∩Rj = /0 ∀i 6= j , i , j ∈ N;

C : set of combinations of items; C =
[
i∈N

Ci , Ci ∩Cj = /0 ∀i 6= j , i , j ∈ N;

er
c : 1 if item r ∈ R is in combination c ∈ C ;

tc : service time of combination c ∈ C with tc ≤ ∑
r∈c

tr , tc ≥ tr ∀r ∈ c;

qc : size of combination c ∈ C ;

[ai ,bi ] : time window for customer i ∈ N.



VRP with Discrete Split Delivery

Decision variables

xk
ij =

{
1 if arc (i , j) ∈ E is used by vehicle k ∈ K ;
0 otherwise.

yk
c =

{
1 if vehicle k ∈ K delivers combination c ∈ C ;
0 otherwise.

T k
i : time when vehicle k ∈ K arrives at customer i ∈ N

Constraints

Flow and precedence constraints
Demand-satisfaction constraints
Time-windows constraints
Capacity constraints



VRP with Discrete Split Delivery

Extensive formulation

min ∑
p∈P

cpλp (1)

∑
p∈P

er
pλp = 1 ∀r ∈ R (2)

∑
p∈P

λp ≤ |K | (3)

λp ≥ 0 ∀p ∈ P (4)

where:

P : set of feasible sequences;
er
p : 1 if item r ∈ R is delivered in sequence p ∈ P and 0

otherwise;
cp : cost of sequence p ∈ P.



VRP with Discrete Split Delivery

Pricing problem

p∗ = argmin
p∈P

{c̃p}= argmin
p∈P

{cp− ∑
r∈R

πre
r
p−π0} (5)

Network formulation

elementary resource constrained shortest path problem
(ERCSPP)

one node for each variable yc



Two-stage column generation

Algorithm

start with a subset of variables yc in C ′ (heuristic);

compute a bound of the reduced cost for variables
yc /∈ C ′;

add the most profitable variable;

iterate.



Two-stage column generation

Advantages

the pricing problem is easier to solve

possibly many sub-optimal compact variables are left
out from the formulation

Drawbacks

we don’t obtain a valid lower bound



VRP with Discrete Split Delivery

Possible solution to LB computation

Add some ad-hoc artificial variables yart
c to the partial compact

formulation.

In particular, we create artificial super-optimal subset of items by
combining variables yc not yet in the partial compact formulation such
that:

they cover the maximum number of items;

with the minimum service time;

with the minimum total size.



Variable elimination

Given an integer linear program (IP) with an upper bound UB, with
objective mincT x and constraints Ax ≥ b,x ∈ Zn

+, let π be a feasible
solution to the dual of the linear programming relaxation of (IP).

Theorem (Nemhauser & Wolsey, 1988)

If the reduced cost of a non-negative integer variable exceeds a given
optimality gap, the variable must be zero in any optimal integer solution.
In other words:

c̃e = (c−πA)e > UB−πb =⇒ xe = 0 (6)



Variable elimination

Theorem (Irnich et al., 2007)

If the minimum reduced cost of all path variables of a DW master
problem containing arc (i , j) exceeds a given optimality gap, no path that
contains arc (i , j) can be used in an optimal solution. Hence, the arc
(i , j) can be eliminated. In other words:

min
P∈F st

ij

c̃P(π) > UB−πb =⇒ xij = 0 (7)

where F st
ij is the set of feasible s− t paths containing arc (i , j).



VRP with Discrete Split Delivery

Let the restricted master problem (MP) be defined on the whole set C and let the
partial restricted master problem (PMP) be defined on a subset of combinations
C ′ ⊂ C .

Let UB be an upper bound for both MP and PMP, let LB be a lower bound for MP
and LB ′ be a lower bound for PMP, with LB ′ ≥ LB.

Let π be a feasible dual solution to MP and π′ be a feasible dual solution to PMP.

We define the following quantities:

lbc = LB + min
p∈Fc

c̃p = LB + min
p∈Fc

{cp − ∑
r∈R

er
pπ

∗
r −π

∗
0} (8)

lb′c = LB ′+ min
p∈F ′

c

c̃p = LB ′+ min
p∈F ′

c

{cp − ∑
r∈R

er
pπ

′∗
r −π

′∗
0 } (9)

where:

- Fc = { (subset of) feasible sequences in P = P(C) : yc = 1}
- F ′

c = { (subset of) feasible sequences in P = P(C ′) : yc = 1}



VRP with Discrete Split Delivery

Variable elimination

lbc > UB =⇒ yc = 0 in optimal MP (over C )

lb′c > UB =⇒ yc = 0 in optimal PMP (over C ′)

Question

Can variable elimination in PMP be extended to MP?

PMP MP
A true true
B true false
C false true
D false false



VRP with Discrete Split Delivery

Facts
PMP is contained in MP

LB ′ ≥ LB

Conjecture
lb′c ≥ lbc (10)

Conjecture true =⇒ (C) never occurs.

Unfortunately (B) is possible.



Compact variable generation

Algorithm 2: yc - Compact variable generation
repeat

repeat
generate variables for partial master problem (CG1)

until until optimal PMP ;
repeat

ŷc = minyc∈C\C ′ {(cki +cij −ckj |k 6= j ,c ∈ Ci )−∑r er
c πr }

if minp∈F ′
C ′∪c

{c̃p}< 0 then

add column p and ŷc to C ′

else
if minp∈F ′

c
{c̃p} ≤ UB−LB then

add ŷc to C ′

else
if minp∈F ′

c∪yart
c

{c̃p}> UB−LB then

fix variable ŷc to 0
else

add ŷc to C ′

end

end

end

until until some yc has been added to C ′ or C \C ′ = /0 ;

until until all yc are either in C ′ or fixed to 0 ;



Implementation

Exact algorithm for the Discrete SDVRP based on Branch&Price

Pricing solved using bi-directional dynamic programming with DSSR

Estimation of lb′c via dynamic programming with DSSR

Not sophisticated branching rules: vehicles first, arcs next

No massive pricing, No additional cuts at master level



Preliminary results (qualitative)

Instances derived from Solomon data set for the VRPTW (few
manually generated instances)

Instances with sub-optimal compact variables are correctly detected

(+) The overall pricing time has been reduced

(+) The number of generated columns has been reduced as well

(-) The method is sensitive to initialization

(?) Even with no eliminated compact variables the overall number
of generated columns is smaller



Conclusions and Outlook

Two stage column generation:

Methodology to accelerate an overall B&P algorithm via generation
of compact formulation variables

Useful when the compact formulation exhibits a large number of
variables, but not only

Outlook:

Full validation of the model

CTW is a great conference, we had feedback before the talk!
(apparently) There is a better method to estimate lb′c , see you next year!


