A Benders decomposition approach for the choice-based uncapacitated facility location and pricing problem

> Stefano Bortolomiol Michel Bierlaire Virginie Lurkin

Transport and Mobility Laboratory (TRANSP-OR) École Polytechnique Fédérale de Lausanne

TSL Workshop 2021

19 July 2021

Motivation

- In many transportation problems suppliers can benefit from a disaggregate model of demand to capture observed and unobserved heterogeneity.
- Many classes of discrete choice models cannot be easily integrated in mixed integer optimization models.
- The majority of the works in the literature sacrifice complexity either at demand level or at supply level for the sake of tractability.
- Alternative approach: trying to circumvent issues related to non-linearity and non-convexity of the demand function using simulation.

Simulation-based linearization of choice probabilities¹

- Let I be the universal choice set and N be the set of heterogeneous customers.
- Random utility models:

$$U_{in} = V_{in} + \epsilon_{in} \qquad \forall i \in I, \forall n \in N.$$

Choice probabilities:

$$P_{in} = \Pr[V_{in} + \epsilon_{in} = \max_{j \in I} (V_{jn} + \varepsilon_{jn})].$$

Linearization:

$$U_{inr} = V_{in} + \xi_{inr} \qquad \forall i \in I, \forall n \in N, \forall r \in R,$$

$$x_{inr} = \begin{cases} 1 \text{ if } U_{inr} = \max_{j \in I} U_{jnr}, \\ 0 \text{ otherwise} \end{cases} \qquad \forall i \in I, \forall n \in N, \forall r \in R,$$

$$P_{in} = \frac{1}{|R|} \sum_{r \in R} x_{inr} \qquad \forall i \in I, \forall n \in N.$$

¹Pacheco Paneque et al., "Integrating advanced discrete choice models in mixed integer linear optimization" (2021).

Stefano Bortolomiol Benders decomposition approach for choice-based optimization

Facility location and pricing with disaggregate demand

- The utility of location *i* ∈ *I* depends on the socioeconomic characteristics of the customer and on the attributes of the alternative (e.g. price, type of service).
- We assume that, if opened, the service is offered at a price chosen among a finite set.
- We consider discrete price levels and "explode" the set *I* by considering one alternative per price level, all other attributes being the same.
- By doing so, the utilities become parameters of the optimization model:

$$\hat{U}_{inr} = \beta_{p,inr} \hat{p}_i + \beta_{q,inr} \hat{q}_{inr} + \xi_{inr} \quad \forall i \in I, \forall n \in N, \forall r \in R.$$

Notation

Sets

- *I* Universal choice set.
- $I_k \subset I$ Subset of alternatives controlled by the optimizing supplier.
 - *N* Set of heterogeneous (groups of) customers.
 - *R* Set of independent scenarios.

Parameters

- θ_n Number of homogeneous people in group $n \in N$.
- $\hat{U}_{inr} \ge 0$ Potential utility of alternative $i \in I$ for $n \in N$ in scenario $r \in R$.
 - \hat{p}_i Exogenous price of alternative $i \in I$.
 - F_i Fixed cost of opening facility $i \in I_k$.
 - V_i Variable cost of offering facility $i \in I_k$ to one customer.

Decision variables:

- $y_i \in \{0, 1\}$ 1 if supplier k offers alternative $i \in I_k$, 0 otherwise.
 - $x_{inr} \ge 0$ 1 if customer $n \in N$ chooses $i \in I$ in scenario $r \in R$, 0 otherwise.

Mathematical model

$$\max_{y} \quad \pi = -\sum_{i \in I_{k}} F_{i} y_{i} + \sum_{i \in I_{k}} \sum_{n \in \mathbb{N}} \sum_{r \in \mathbb{R}} \frac{1}{|\mathcal{R}|} \theta_{n} (\hat{p}_{i} - V_{i}) x_{inr}, \tag{1}$$

s.t.
$$\sum_{i \in I} x_{inr} = 1$$
 $\forall n \in N, \forall r \in R,$ (2)

$$x_{inr} \leq y_i \qquad \forall i \in I, \forall n \in N, \forall r \in R,$$
(3)

$$\sum_{j \in I} \hat{U}_{jnr} x_{jnr} \ge \hat{U}_{inr} y_i \qquad \forall i \in I, \forall n \in N, \forall r \in R, \qquad (4)$$
$$x_{inr} \ge 0 \qquad \forall i \in I, \forall n \in N, \forall r \in R, \qquad (5)$$

$$y_i \in \{0, 1\} \qquad \qquad \forall i \in I. \tag{6}$$

Benders decomposition

Master problem (MILP):

$$\min_{y} \quad \pi = \sum_{i \in I_k} F_i y_i - \sum_{n \in N} \sum_{r \in R} z_{nr}, \tag{7}$$

s.t. Benders cuts, (8)

$$y_i \in \{0,1\} \qquad \qquad \forall i \in I. \tag{9}$$

- 2 Independent dual subproblems (LP) can be solved for each $r \in R$ (and each $n \in N$) to obtain the dual variables. Not all dual subproblems need to be solved each time.
 - Benders optimality cuts can be added to the master problem:

$$z_{nr} \geq \sum_{i \in I} (m^*_{inr}) y_i + \sum_{i \in I} c^*_{inr}.$$

(1) - (3) are repeated until convergence.

Branch-and-Benders-cut and enhancements

- Solving the master problem at each iteration is inefficient: Benders cuts can be inserted while processing the branch-and-bound tree.²
- Classical Benders cuts provide slow convergence \rightarrow efficient cuts are key to the success of this approach:
 - Pareto-optimal cuts^{3,4,}
 - Minimal infeasible subset cuts⁵
 - Partial Benders decomposition⁶

This is still a work in progress.

³Magnanti and Wong, "Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria" (1981).

⁴Papadakos, "Practical enhancements to the Magnanti–Wong method" (2008).

⁵Côté, Dell'Amico, and Iori, "Combinatorial Benders' cuts for the strip packing problem" (2014).

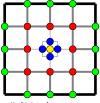
⁶Crainic et al., "Partial Benders decomposition: general methodology and application to stochastic network design" (2021).

 $^{^2 {\}sf Fischetti},$ Ljubić, and Sinnl, "Redesigning Benders decomposition for large-scale facility location" (2017).

Numerical experiments

- Location and price of parking facilities for commuters.
- Mixed logit model taken from the literature⁷.
- Demand heterogeneity: 20 origins, 2 income levels, 2 car types. |N| = 80.
- 12 candidate locations: 8 on-street + 4 underground.
- 5 possible price levels for each location. $|I_k| = 60$.
- |R| = 5, 10, 20, 50, 100 for computational analysis.

$ I_k $	N	R	Optimal solution	CPLEX	Ours
60	80	10 20 50 100	2727.20 2585.15 2493.74 2522.12	166 566 2513 9608	351 1744 7076 28856



⁷Ibeas et al., "Modelling parking choices considering user heterogeneity" (2014).

Stefano Bortolomiol Benders decomposition approach for choice-based optimization

- Many supply problems where demand is modeled at a disaggregate level using advanced discrete choice models can be written as stochastic optimization problems by relying on simulation.
- The resulting formulation exhibit a block-diagonal structure which make it particularly suitable to the use of decomposition techniques such as Benders.
- We are working on efficient enhancements for our Benders approach and on expanding our analysis beyond the current facility location setting.
- We are planning to investigate data-driven approaches to generate tighter cuts and reduce computational times.