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Motivation

In many transportation problems suppliers can benefit from a disaggregate model
of demand to capture observed and unobserved heterogeneity.

Many classes of discrete choice models cannot be easily integrated in mixed
integer optimization models → choice-based optimization

The majority of the works in the literature sacrifice complexity either at demand
level or at supply level for the sake of tractability.

Alternative approach: trying to circumvent issues related to non-linearity and
non-convexity of the demand function using simulation.
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Simulation-based linearization of choice probabilities1

Let I be the universal choice set and N be the set of heterogeneous customers.

Random utility models:

Uin = Vin + εin ∀i ∈ I, ∀n ∈ N.

Choice probabilities:

Pin = Pr[Vin + εin = max
j∈I

(Vjn + εjn)].

Linearization:

Uinr = Vin + ξinr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R,

xinr =
{

1 if Uinr = maxj∈I Ujnr ,

0 otherwise
∀i ∈ I, ∀n ∈ N, ∀r ∈ R,

Pin = 1
|R|
∑
r∈R

xinr ∀i ∈ I, ∀n ∈ N.

1Pacheco Paneque et al., “Integrating advanced discrete choice models in mixed integer
linear optimization” (2021).
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Previous research

Applications:

Optimizing prices for uncapacitated and capacitated services.2

Computing approximate equilibrium solutions for competitive markets.3

Determining optimal price-based regulation of transport markets.4

Open questions:

Scalability.

Extension to variables other than prices.

2Pacheco Paneque et al., “Integrating advanced discrete choice models in mixed integer
linear optimization” (2021).

3Bortolomiol, Lurkin, and Bierlaire, “A simulation-based heuristic to find approximate
equilibria with disaggregate demand models” (2021).

4Bortolomiol, Lurkin, and Bierlaire, “Price-based regulation of oligopolistic markets under
discrete choice models of demand” (2021).
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Continuous Pricing Problem (CPP)
A supplier wants to maximize profits obtained by controlling alternatives Ik ⊂ I.
The utilities of the customers are price-dependent variables:

Uinr = βp,inr pi + q̂inr + ξinr ∀i ∈ I, ∀n ∈ N,∀r ∈ R.

max
p

π =
∑
i∈Ik

∑
n∈N

∑
r∈R

1
|R|θnpixinr , (1)

s.t.
∑
i∈I

xinr = 1 ∀n ∈ N, ∀r ∈ R, (2)∑
j∈I

Ujnr xjnr ≥ Uinr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, (3)

0 ≤ pi ≤ Mp
i ∀i ∈ I, (4)

xinr ∈ {0, 1} ∀i ∈ I,∀n ∈ N,∀r ∈ R. (5)

The linearization of the product pi · xinr (continuous and binary) can be done using
big-M constraints.
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Discrete Pricing Problem (DPP)

For each alternative i ∈ Ik we constrain prices pi to the set Qi = {p1
i , p2

i , ..., p
|Q|
i }.

Utilities become parameters of the optimization model: Ûinr = βp,inr p̂i + q̂inr + ξinr .

max
y

π =
∑
i∈Iexp

k

∑
n∈N

∑
r∈R

1
|R|θnp̂ixinr , (6)

s.t.
∑
j∈Iexp

i

yj = 1 ∀i ∈ I, (7)

∑
i∈Iexp

xinr = 1 ∀n ∈ N,∀r ∈ R, (8)

xinr ≤ yi ∀i ∈ Iexp , ∀n ∈ N,∀r ∈ R, (9)∑
j∈Iexp

Ûjnr xjnr ≥ Ûinr yi ∀i ∈ Iexp , ∀n ∈ N,∀r ∈ R, (10)

xinr ∈ {0, 1} ∀i ∈ Iexp , ∀n ∈ N,∀r ∈ R, (11)
yi ∈ {0, 1} ∀i ∈ Iexp . (12)
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Numerical experiments

|R| CPP DPP Gap
Time Opt |Iexp

i | Time Opt

20 0.45 71774.95
21 1.42 70390.50 1.93%
51 7.18 71316.20 0.64%

101 8.89 71379.90 0.55%

50 10.46 72423.71
21 14.59 71889.00 0.74%
51 31.51 72106.36 0.44%

101 89.91 72185.30 0.33%

100 101.64 66452.18
21 34.48 66118.40 0.50%
51 161.03 66255.90 0.30%

101 395.86 66341.32 0.17%

200 288.89 70788.17
21 139.17 69859.60 1.31%
51 415.90 70489.95 0.42%

101 1829.24 70571.67 0.31%

Table: High-speed rail pricing: solving CPP and DPP to optimality with CPLEX.
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Assortment and Continuous Pricing Problem (ACPP)

We include the decision about whether or not to offer any given product i ∈ Ik to
the customers.
The actual utility for the customer is Ua

inr = Uinr · yi .

Customers must choose the alternative with the highest utility among those that
are made available by the supplier:

Uinr = βp,inr pi + qinr + ξinr ∀i ∈ I,∀n ∈ N,∀r ∈ R, (13)
Ua

inr ≤ Uinr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (14)

Uinr ≤ Ua
inr + MU

inr (1− yi ) ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, (15)

Ua
inr ≤ MU

inr yi ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, (16)
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Assortment and Discrete Pricing Problem (ADPP)

The formulation of the DPP still applies, with a small change:

max
y

π =
∑
i∈Iexp

k

∑
n∈N

∑
r∈R

1
|R|θnp̂ixinr , (17)

s.t.

�
�
�
��

∑
j∈Iexp

i

yj = 1 ���∀i ∈ I, (18)

∑
i∈Iexp

xinr = 1 ∀n ∈ N,∀r ∈ R, (19)

xinr ≤ yi ∀i ∈ Iexp , ∀n ∈ N,∀r ∈ R, (20)∑
j∈Iexp

Ûjnr xjnr ≥ Ûinr yi ∀i ∈ Iexp , ∀n ∈ N,∀r ∈ R, (21)

xinr ∈ {0, 1} ∀i ∈ Iexp , ∀n ∈ N,∀r ∈ R, (22)
yi ∈ {0, 1} ∀i ∈ Iexp . (23)
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Numerical experiments

|R| ACPP ADPP Gap
Time Opt |Iexp

i | Time Opt

10 11706 907.8 16 132 864.0 4.82%
31 800 876.0 3.50%

20 129600* 877.0* 16 429 842.0 3.99%
31 2778 862.5 1.65%

50 129600* 842.8* 16 837 816.4 3.13%
31 12191 830.4 1.47%

100 129600* 844.0* 16 3419 828.2 1.87%
31 39425 831.8 1.45%

Table: Parking assortment and pricing: solving ACPP and ADPP to optimality
with CPLEX.
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What about Benders and discrete supply variables?

Let’s fix the discrete supply variables of the supplier to y∗.
The lower-level utility maximization problem for a single customer n and scenario r
is as follows:

max
x

U =
∑
i∈I

Ûixi , (24)

s.t.
∑
i∈I

xi = 1, (25)

xi ≤ y∗i ∀i ∈ I, (26)
xi ≥ 0 ∀i ∈ I. (27)

This is a continuous knapsack problem, where the knapsack’s capacity is equal to
1 and each item (alternative) i has a weight of 1 and a value of Ûinr .
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Benders decomposition
1 Initialize UB =∞ and LB = −∞ of the master problem (MP).

2 Initialize the restricted master problem (RMP):
min
y,z

z (28)

s.t. Domain constraints on the y variables (29)
z ≥ LBz . (30)

3 Solve current RMP. Save the solution y∗, z∗. Let f (y∗, z∗) be the optimal
objective value. Update LB = f (y∗, z∗).

4 Given y∗, compute f (y∗)ADPP for the original problem by deriving the choices for
all customers and scenarios. Update UB = min{UB, f (y∗)ADPP}.

5 If UB − LB ≤ ε, then stop.
Else, solve the dual worker problem for y = y∗. Using the optimal dual variables,
add to the master problem an optimality cut of the following form:

z ≥
∑
n∈N

∑
r∈R

(
∑
i∈I

miyi + q) (31)

and go to step 3.
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Branch-and-Benders-cut

Solving the master problem at each iteration is inefficient.

Benders cuts can be inserted while processing the branch-and-bound tree of the
master problem.5

5Fischetti, Ljubić, and Sinnl, “Redesigning Benders decomposition for large-scale facility
location” (2017).
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Preliminary results

|R| |Iexp
i | Opt CPLEX BBC

5 3 2399.20 13.20 42.81
5 6 2526.20 165.68 230.17
5 12 2641.60 3685.49 1793.00

10 3 2330.20 87.79 106.40
10 6 2727.20 703.47 587.74
10 12 2795.10 10931.09 7627.22
20 3 2333.90 363.22 256.94
20 6 2585.15 1066.06 1669.50
20 12 2638.08 54336.94 27043.61

Table: Parking assortment and pricing, |N| = 80, |Ik | = 12: solving ADPP to
optimality with CPLEX and BBC algorithm (single-thread).
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Enhancements and future work

Classical Benders cuts provide slow convergence → efficient cuts are key to the
success of this approach:

Pareto-optimal cuts;6

minimal infeasible subset cuts;
partial Benders decomposition.7

6Magnanti and Wong, “Accelerating Benders decomposition: Algorithmic enhancement and
model selection criteria” (1981).

7Crainic et al., “Partial benders decomposition: general methodology and application to
stochastic network design” (2021).
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Summary

Supply problems with advanced discrete choice models of demand can be
written as stochastic optimization problems by relying on simulation.

Choice-based optimization problems with discrete upper-level variables exhibit a
block-diagonal structure which make them particularly suitable to the use of
decomposition techniques such as Benders.

We are working on efficient enhancements for our Benders approach to generate
tighter cuts and reduce computational times.

The trade-off between the increased realism of the demand model and the
computational complexity of the resulting optimization/equilibrium problem must
be evaluated on a case-by-case basis.
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