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Motivation

@ In many transportation problems suppliers can benefit from a disaggregate model
of demand to capture observed and unobserved heterogeneity.
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@ In many transportation problems suppliers can benefit from a disaggregate model
of demand to capture observed and unobserved heterogeneity.

@ Many classes of discrete choice models cannot be easily integrated in mixed
integer optimization models — choice-based optimization

@ The majority of the works in the literature sacrifice complexity either at demand
level or at supply level for the sake of tractability.

@ Alternative approach: trying to circumvent issues related to non-linearity and
non-convexity of the demand function using simulation.
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Simulation-based linearization of choice probabilities?

@ Let / be the universal choice set and N be the set of heterogeneous customers.
@ Random utility models:

Uin = Vin + €in Viel,Vne N.
@ Choice probabilities:

Pin = Pr[\/in + €in = ma’X(\/jn + Ejn)]~
Jje

LPacheco Paneque et al., “Integrating advanced discrete choice models in mixed integer
linear optimization” (2021).
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Simulation-based linearization of choice probabilities?

@ Let / be the universal choice set and N be the set of heterogeneous customers.
@ Random utility models:

Uin = Vin + €in Viel,Vne N.
@ Choice probabilities:

Pin = Pr[\/in + €in = ma’X(\/jn + 5jn)]~
Jj€

@ Linearization:
Uinr = Vi + &inr Vie l,¥ne N,Vr € R,

1 if Uinr = maxjes Unr,

Xinr = Vie l,¥ne N,Vr € R,
0 otherwise

1
Pm =Y Xinr Vi € /,Vn S N.
P>

LPacheco Paneque et al., “Integrating advanced discrete choice models in mixed integer
linear optimization” (2021).
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Previous research

Applications:
@ Optimizing prices for uncapacitated and capacitated services.?

@ Computing approximate equilibrium solutions for competitive markets.’

@ Determining optimal price-based regulation of transport markets.*

Open questions:
@ Scalability.

@ Extension to variables other than prices.

2Pacheco Paneque et al., “Integrating advanced discrete choice models in mixed integer
linear optimization” (2021).

3Bortolomiol, Lurkin, and Bierlaire, “A simulation-based heuristic to find approximate
equilibria with disaggregate demand models” (2021).

4Bortolomiol, Lurkin, and Bierlaire, “Price-based regulation of oligopolistic markets under
discrete choice models of demand” (2021).
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|
Continuous Pricing Problem (CPP)

@ A supplier wants to maximize profits obtained by controlling alternatives I, C I.
@ The utilities of the customers are price-dependent variables:

Uinr - /Bp,inrp/ + CA]inr + finr Vi S I,vn < N,Vr c R.
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s.t. inn, =1 ¥ne N,Vr € R, (2)
iel
Z Uijjnr Z Uinr Vi e I,Vn S N,Vr S :‘?7 (3)
jel
0<p <M viel, (4)
Xinr € {0,1} Viel,¥Yne N,Vr € R. (5)

@ The linearization of the product p; - xi»r (continuous and binary) can be done using
big-M constraints.
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.
Discrete Pricing Problem (DPP)

@ For each alternative i € Iy we constrain prices p; to the set Q; = {p,—l, P2, ..., pJQl}.

@ Utilities become parameters of the optimization model: Ui, = Bp,inePi + Ginr + &inr-
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myax ™= Z Z Z |T1?|9nl3ixinr,

ie/:XP neN reR

s.t. Zyjfl Vi e l,

> i =1 Vn e N,Vr € R,
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Numerical experiments

- CPP DPP Gap
Time Opt |17 Time Opt

21 1.42 70390.50 1.93%

20 0.45 71774.95 51 7.18 71316.20 0.64%

101 8.89 71379.90 0.55%

21 14.59 71889.00 0.74%
50 10.46 72423.71 51 31.51 72106.36  0.44%
101 89.91 72185.30 0.33%

21 34.48 66118.40 0.50%
100 101.64 66452.18 51 161.03 66255.90 0.30%
101 395.86 66341.32  0.17%

21 139.17  69859.60 1.31%
200 288.89 70788.17 51 415.90  70489.95 0.42%
101 1829.24  70571.67 0.31%

Table: High-speed rail pricing: solving CPP and DPP to optimality with CPLEX.
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|
Assortment and Continuous Pricing Problem (ACPP)

@ We include the decision about whether or not to offer any given product i € Ix to
the customers.

@ The actual utility for the customer is U;,, = Uinr - yi.
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|
Assortment and Continuous Pricing Problem (ACPP)

@ We include the decision about whether or not to offer any given product i € Ix to

the customers.

@ The actual utility for the customer is U;,, = Uinr - yi.

@ Customers must choose the alternative with the highest utility among those that

are made available by the supplier:

Uinr = Bp,inrPi + Ginr + &inr Viel,¥Yne N,Vr e R,
Up, < Uine Vie l,Yne N,Vr € R,
Unne < U, + M5 (1 — ) Vi e l,¥ne N,Vr € R,
Upr < My Vi€ 1,¥ne N,Vr € R,
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|
Assortment and Discrete Pricing Problem (ADPP)

@ The formulation of the DPP still applies, with a small change:

myax = Z Z Z ﬁenﬁixinr, (17)

iEI:XP neN reR

Yiet, (1)

Vn e N,Vr € R, (19)

Xinr < Yi Vi e /eXP,Vn € N,Vr S I?7 (20)
Z lAJjanjnr Z Uinryi Vi e /exP,Vn € N,Vr c R, (21)
jelep

Xinr € {07 1} vl - /eXp,Vn (S N,Vr (S R, (22)
yi € {0,1} Vie ”®.  (23)
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Numerical experiments

ACPP ADPP
Gap
Time Opt [IP] Time  Opt

16 132 8640 4.82%
11706 907.8 51 gy 8760 3.50%
16 420 8420 3.99%

* *
120600 8TT.0% 5y 528 8625 1.65%
16 87 8164 3.13%

* *
129600%  842.8% 31 15101 8304 1.47%
16 3419 8282 1.87%

* *
129600%  844.0% 37 39405 8318  1.45%

Table: Parking assortment and pricing: solving ACPP and ADPP to optimality

with CPLEX.
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-
What about Benders and discrete supply variables?

@ Let's fix the discrete supply variables of the supplier to y™*.

@ The lower-level utility maximization problem for a single customer n and scenario r
is as follows:

mXax U= Z UiXi, (24)
il
st Y xi=1, (25)
il
x <y Viel, (26)
x>0 viel (27)

@ This is a continuous knapsack problem, where the knapsack's capacity is equal to
1 and each item (alternative) i has a weight of 1 and a value of Uj,,.
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Benders decomposition

@ Initialize UB = 0o and LB = —o0 of the master problem (MP).

Stefano Bortolomiol Benders decomposition for choice-based optimization problems 12 / 16



Benders decomposition

@ Initialize UB = 0o and LB = —o0 of the master problem (MP).
@ Initialize the restricted master problem (RMP):

min  z (28)

v,z

s.t. Domain constraints on the y variables (29)
z>LB,. (30)

Stefano Bortolomiol Benders decomposition for choice-based optimization problems 12 / 16



Benders decomposition

@ Initialize UB = 0o and LB = —o0 of the master problem (MP).
@ Initialize the restricted master problem (RMP):

min  z (28)

v,z

s.t. Domain constraints on the y variables (29)
z>LB,. (30)

@ Solve current RMP. Save the solution y*, z*. Let f(y*,z") be the optimal
objective value. Update LB = f(y*, z*).

Stefano Bortolomiol Benders decomposition for choice-based optimization problems 12 / 16



Benders decomposition

@ Initialize UB = 0o and LB = —o0 of the master problem (MP).
@ Initialize the restricted master problem (RMP):

min  z (28)

v,z

s.t. Domain constraints on the y variables (29)
z>LB,. (30)

@ Solve current RMP. Save the solution y*, z*. Let f(y*,z") be the optimal
objective value. Update LB = f(y*, z*).

@ Given y*, compute f(y*)*P"" for the original problem by deriving the choices for
all customers and scenarios. Update UB = min{UB, f(y*)"°""}.

Stefano Bortolomiol Benders decomposition for choice-based optimization problems 12 / 16



Benders decomposition

@ Initialize UB = 0o and LB = —o0 of the master problem (MP).
@ Initialize the restricted master problem (RMP):

min  z (28)

v,z

s.t. Domain constraints on the y variables (29)
z>LB,. (30)

@ Solve current RMP. Save the solution y*, z*. Let f(y*,z") be the optimal
objective value. Update LB = f(y*, z*).

@ Given y*, compute f(y*)*P"" for the original problem by deriving the choices for
all customers and scenarios. Update UB = min{UB, f(y*)"°""}.

@ If UB — LB < ¢, then stop.
Else, solve the dual worker problem for y = y*. Using the optimal dual variables,
add to the master problem an optimality cut of the following form:

z ZZZ(Z miyi + q) (31)

neN rerR i€l
and go to step 3.
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Branch-and-Benders-cut

@ Solving the master problem at each iteration is inefficient.

@ Benders cuts can be inserted while processing the branch-and-bound tree of the
master problem.®

5Fischetti, Ljubi¢, and Sinnl, “Redesigning Benders decomposition for large-scale facility
location” (2017).
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Preliminary results

IR| |Il.ex"| Opt CPLEX BBC

5 3 2399.20 13.20 42.81
5 6 2526.20 165.68 230.17
5 12 2641.60  3685.49 1793.00
10 3 2330.20 87.79 106.40
10 6 2727.20 703.47 587.74
10 12 2795.10 10931.09  7627.22
20 3 2333.90 363.22 256.94
20 6 2585.15 1066.06 1669.50
20 12 2638.08 54336.94 27043.61

Table: Parking assortment and pricing, |N| = 80, |/x| = 12: solving ADPP to

optimality with CPLEX and BBC algorithm (single-thread).
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Enhancements and future work

@ Classical Benders cuts provide slow convergence — efficient cuts are key to the
success of this approach:

o Pareto-optimal cuts;®
e minimal infeasible subset cuts;

o partial Benders decomposition.”

6Magnanti and Wong, “Accelerating Benders decomposition: Algorithmic enhancement and
model selection criteria” (1981).

"Crainic et al., “Partial benders decomposition: general methodology and application to
stochastic network design” (2021).
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Summary

@ Supply problems with advanced discrete choice models of demand can be
written as stochastic optimization problems by relying on simulation.

@ Choice-based optimization problems with discrete upper-level variables exhibit a
block-diagonal structure which make them particularly suitable to the use of
decomposition techniques such as Benders.

@ We are working on efficient enhancements for our Benders approach to generate
tighter cuts and reduce computational times.

@ The trade-off between the increased realism of the demand model and the
computational complexity of the resulting optimization/equilibrium problem must
be evaluated on a case-by-case basis.
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