Modelling competition in demand-based optimization models

Stefano Bortolomiol Virginie Lurkin Michel Bierlaire

Transport and Mobility Laboratory (TRANSP-OR) École Polytechnique Fédérale de Lausanne

Swiss Operations Research Days

Bern, 12 June 2018

2 Modelling the problem

Ourrent status of the research

2 Modelling the problem

Competition in transportation

- Competition is often present in the form of oligopolies (regulations, limited capacity of the infrastructure, barriers to entry, etc.).
- Deregulation often led to oligopolistic markets.
 - Airlines
 - Railways
 - Buses

Trending topic

TRANSPORTS FLIXBUS ET EUROBUS S'ALLIENT POUR DESSERVIR LA SUISSE

Les deux compagnies de bus Flixbus et Eurobus se sont mises d'accord pour démarrer le cabotage en Suisse à partir du 10 juin. C'est une concurrence accrue pour les CFF.

The second	
PAR PASCAL SCHMUCK ZURICH 05.06.2018	-< 9
ARTICLES EN RELATION) Gros succès de Flixbus en Suisse) Flixbus épinglé pour cabotage	Flixbus s'implante en Suisse. A partir du 10 juin, la compagnie allemande de bus desservira les trajets St-Gall-Aéroport de Genève, Goire-Sion, Coire-Aéroport de Zuirch et Bàle EuroAirport-Lugano. Elle s'associe avec Eurobus, la plus grande entreprise de bus en Suisse, révèle le Blick.

Réforme de la SNCF : à quoi va ressembler la suite après le vote du ...

LCI - 5 hours ago

Après son vote par l'Assemblée en avril, puis par le Sénat le 5 juin, le projet de loi de réforme de la SNCF doit faire l'objet d'une commission ...

Réforme de la SNCF. Faut-il vous préparer à une poursuite de la ... Ouest-France - 6 Jun 2018

Contre la réforme ferroviaire, les cheminots envahissent le siège de la... Le Hufffest - 5 un 2018 SNCF: le Senat a vote le projet de réforme ferroviaire Franceinto - 6 un 2018 Vote au Sénat de la réforme de la SNCF: la grève n'est pas finle In-Depth - La Tribune.fr - 6 Jun 2018 Le Senat vote la réforme de la SNCF In-Depth - Le Tigen - 5 Jun 2018

How to study competitive transport markets?

- Modelling demand
- Modelling supply
- Modelling competition

Modelling demand

- Each customer chooses the alternative that maximizes his/her utility.
- Customers have different tastes and socioeconomic characteristics that influence their choice.

Modelling supply

- Operators take decisions that optimize their objective function (e.g. revenue maximization).
- Decisions can be related to pricing, capacity, frequency, availability ...
- Decisions are influenced by:
 - The preferences of the customers
 - The decisions of the competitors

Modelling competition

- We consider non-cooperative games.
- We aim at understanding the Nash equilibrium solutions of such games, i.e. stationary states of the system in which no competitor has an incentive to change its decisions.

Modelling the problem

Starting point:

MILP for the demand-based optimization problem for one operator (Pacheco et al. (2017)).

The goal:

MILP that models the non-cooperative multi-leader-follower game played by operators and customers.

The framework

Three-level framework: customers, operators and market.

Customer level: discrete choice models take into account preference heterogeneity and model individual decisions. These can be integrated in a MILP by relying on simulation to draw from the distribution of the error term of the utility function.

The framework

Three-level framework: customers, operators and market.

- Customer level: discrete choice models take into account preference heterogeneity and model individual decisions. These can be integrated in a MILP by relying on simulation to draw from the distribution of the error term of the utility function.
- Operators level: a mixed integer linear program can maximize any relevant objective function.

The framework

Three-level framework: customers, operators and market.

- Customer level: discrete choice models take into account preference heterogeneity and model individual decisions. These can be integrated in a MILP by relying on simulation to draw from the distribution of the error term of the utility function.
- Operators level: a mixed integer linear program can maximize any relevant objective function.
- Market level: Nash equilibrium solutions are found by enforcing best response constraints.

The framework: customer level

 For all customers n ∈ N and all alternatives i ∈ I, R draws are extracted from the error term distribution, each corresponding to a different behavioral scenario. For each r ∈ R we have:

$$U_{inr} = eta_{in} p_{in} + q_{in} + \xi_{inr}$$

where p_{in} is a variable endogenous to the optimization model, β_{in} is the corresponding parameter, q_{in} is the exogenous term and ξ_{inr} is the error term.

• In each scenario, customers choose the alternative with the highest utility:

$$w_{inr} = 1$$
 if $U_{inr} = \max_{j \in I} U_{jnr}$, and $w_{inr} = 0$ otherwise

• Over multiple scenarios, the probability of $n \in N$ choosing $i \in I$ is given by:

$$P_{in} = \frac{\sum_{r \in R} w_{inr}}{R}$$

The framework: operators level

- We assume that an operator $k \in K$ can decide on price p_{in} and availability y_{in} of each alternative $i \in C_k$ for all customers $n \in N$.
- Stackelberg game: the operator (the leader) knows the best response of the customers ("collective" follower) to all strategies.
- Objective function to be maximized by operator k:

$$V_{k} = \frac{1}{R} \sum_{i \in C_{k}} \sum_{n \in N} \sum_{r \in R} \rho_{in} w_{inr}$$

The framework: market level

- The payoff of an operator also depends on the strategies of the competitors
- Let's define as X_k the set of strategies that can be played by operator $k \in K$
- Condition for Nash equilibrium (best response constraints):

$$V_k = V_k^* = \max_{x_k} V_k(x_k, x_{K \setminus \{k\}}) \qquad orall k \in K$$

• Nash (1951) proves that every finite game has at least one mixed strategy equilibrium solution

A fixed-point iteration method

- Sequential algorithm to find Nash equilibrium solutions of a two-player game:
 - Initialization: one player selects an initial feasible strategy.
 - Iterative phase: operators take turns and each plays its best response pure strategy to the last strategy played by the competitor.
 - Termination criterion: either a Nash equilibrium or a cyclic equilibrium is reached.

A fixed-point iteration method

- The algorithm reproduces the behavior of two or more operators that do not know the competitors' objective function.
- Different initial strategies can lead to different equilibria.
- There is no guarantee that a pure strategy Nash equilibrium exists or that it is unique.

MILP formulations

Pure strategies:

- Each operator $k \in K$ chooses a pure strategy from a finite set S_k .
- Number of pure strategy solutions of the game: $|S| = \prod_{k \in K} S_k$.
- For each solution s ∈ S we can derive a payoff function V_{ks} for each operator k ∈ K.
- If s ∈ S includes only best response strategies for all operators, then it is a pure strategy Nash equilibrium for the finite game.

Mixed strategies:

Operator k chooses a mixed strategy from the finite set S_k, i.e. a vector of probabilities p_{sk} associated to all pure strategies s_k in S_k, such that ∑_{sk∈Sk} p_{sk} = 1.

Customer level

Customer constraints:

$$\begin{split} \sum_{i \in I} w_{inrs} &= 1 & \forall n \in N, \forall r \in R, \forall s \in S & (1) \\ w_{inrs} &\leq y_{inrs} & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (2) \\ y_{inrs} &\leq y_{ins} & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (3) \\ y_{ins} &= 0 & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (4) \\ \sum_{n \in N} w_{inrs} &\leq C_i & \forall i \in I \setminus \{0\}, \forall r \in R, \forall s \in S & (5) \\ C_i(y_{ins} - y_{inrs}) &\leq \sum_{m \in N:L_{im}} w_{imrs} & \forall i \in I \setminus \{0\}, \forall n \in N, \forall r \in R, \forall s \in S & (6) \\ \sum_{n \in N} w_{imrs} &\leq (C_i - 1)y_{inrs} + (n - 1)(1 - y_{inrs}) & \forall i \in I \setminus \{0\}, \forall n \in N, \forall r \in R, \forall s \in S & (7) \\ u_{inrs} &= \beta_{in} \rho_{ins} + q_{in}^{d} + \xi_{inr} & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (9) \\ u_{inrs} &= \beta_{in} \rho_{ins} + q_{inr}^{d} + \xi_{inr} & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (9) \\ u_{inrs} &= b_{blar} + M_{U_{nr}} y_{inrs} & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (10) \\ z_{inrs} &\leq U_{nr} & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq U_{nr} & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq U_{inr} & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq U_{nr} & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\forall V_{inr} (1 - w_{inrs}) & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\forall V_{inr} (1 - w_{inrs}) & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\forall V_{inr} (1 - w_{inrs}) & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\forall V_{inr} (1 - w_{inrs}) & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\forall V_{inr} (1 - w_{inrs}) & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\forall V_{inr} (1 - w_{inrs}) & \forall i \in I, \forall n \in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\forall V_{inr} &\in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\in N, \forall r \in R, \forall s \in S & (11) \\ v_{inr} &\leq V_{inr} &\in V_{inr} &\in V_{inr} &\in R, \forall s \in S & (11) \\$$

Operator and market level (Pure strategies)

Find $s \in S$ such that $e_s = 1$

s.t.

Equilibrium constraints:

$$e_{5} \geq \sum_{k \in K} x_{ks} - (|K| - 1) \qquad \qquad \forall s \in S \qquad (13)$$
$$e_{5} \leq x_{ks} \qquad \qquad \forall k \in K, \forall s \in S \qquad (14)$$

Operator constraints:

$$V_{ks} = \frac{1}{R} \sum_{i \in C_k} \sum_{n \in N} \sum_{r \in R} p_{ins} w_{inrs} \qquad \forall k \in K, \forall s \in S$$
(15)

$$V_{ks} \le V_{kt}^{max} \qquad \forall k \in K, \forall s \in S_k, \forall t \in S_k^C$$
(16)

$$V_{kt}^{max} \le V_{ks} + M_r(1 - x_{ks}) \qquad \forall k \in K, \forall s \in S_k, \forall t \in S_k^C$$
(17)

$$\sum_{s \in S} x_{ks} = \left| S_k^C \right| \qquad \forall k \in K \qquad (18)$$

Operator and market level (Mixed strategies)

$$\mathsf{Find} \ \mathsf{p}_{\mathsf{s}_k} \,, \mathsf{b}_{\mathsf{s}_k} \,, \mathsf{r}_{\mathsf{s}_k} \,, \, \mathsf{V}_{\mathsf{s}_k} \,, \, \mathsf{V}_k \ \text{ such that} \dots \qquad \text{or } \quad \max \ \sum_{k \in K} \mathsf{V}_k \qquad \text{or} \dots$$

s.t.

MILP mixed-strategy Nash:

$$\sum_{s_k \in S_k} p_{s_k} = 1 \qquad \qquad \forall k \in \mathcal{K} \tag{19}$$

$$V_{s_k} = \sum_{s_k^C \in S_k^C} P_{s_k^C} V_k(s_k, s_k^C) \qquad \forall k \in K, \forall s_k \in S_k$$
(20)

$$V_k \ge V_{s_k} \qquad \qquad \forall k \in K, \forall s_k \in S_k \qquad (21)$$

$$r_{s_k} = V_k - V_{s_k} \tag{22}$$

$$\begin{aligned} \rho_{s_k} &\leq 1 - b_{s_k} \\ r_{s_k} &\leq M b_{s_k} \end{aligned} \qquad \forall k \in K, \forall s_k \in S_k \qquad (23) \\ \forall k \in K, \forall s_k \in S_k \qquad (24) \end{aligned}$$

Pure strategy payoffs:

$$V_k(s_k, s_k^{\mathsf{C}}) = \frac{1}{R} \sum_{i \in \mathsf{C}_k} \sum_{n \in \mathsf{N}} \sum_{r \in \mathsf{R}} p_{ins} w_{inrs} \qquad \forall k \in \mathsf{K}, \forall (s_k, s_k^{\mathsf{C}}) \in \mathsf{S}$$
(25)

Numerical example: pure strategy equilibria

Payoff matrix of player 1									
S1 \ S2	0,70	0,73	0,76	0,79	0,82	0,85			
0,50	10,00	10,00	10,00	10,00	10,00	10,00			
0,53	10,49	10,60	10,60	10,60	10,60	10,60			
0,56	10,53	10,42	10,53	10,86	11,20	11,20			
0,59	10,27	10,03	9,80	9,91	10,62	11,45			
0,62	10,04	9,80	9,42	9,42	9,42	9,92			
0,65	9,62	9,36	8,84	8,45	8,71	8,58			

Payoff matrix of player 1								
S1 \ S2	0,75	0,77	0,79	0,81	0,83	0,85		
0,50	10,00	10,00	10,00	10,00	10,00	10,00		
0,52	10,40	10,40	10,40	10,40	10,40	10,40		
0,54	10,80	10,80	10,80	10,80	10,80	10,80		
0,56	10,42	10,53	10,86	11,09	11,20	11,20		
0,58	9,74	9,86	10,09	10,44	10,67	11,37		
0,60	9,60	9,60	9,72	10,08	10,44	10,68		

Payoff matrix of player 2

		-		-		
S1 \ S2	0,70	0,73	0,76	0,79	0,82	0,85
0,50	14,00	14,45	14,74	14,69	14,76	14,62
0,53	14,00	14,45	14,74	15,01	14,60	14,45
0,56	14,00	14,60	14,74	14,85	14,76	14,28
0,59	14,00	14,60	15,05	15,48	15,09	14,45
0,62	14,00	14,60	15,20	15,48	15,91	15,81
0,65	14,00	14,60	15,20	15,80	15,91	16,32

(a) Game with 1 pure strategy Nash equilibrium

Payoff matrix of player 2

S1 \ S2	0,75	0,77	0,79	0,81	0,83	0,85
0,50	14,70	14,78	14,69	14,74	14,28	14,62
0,52	14,70	15,09	14,85	14,58	14,61	14,45
0,54	14,85	14,94	15,17	14,74	14,44	14,45
0,56	14,85	14,94	14,85	14,90	14,61	14,28
0,58	15,00	15,09	15,17	15,07	15,11	14,45
0,60	15,00	15,25	15,48	15,39	15,27	14,30

(b) Game with no pure strategy Nash equilibrium

Payoff matrices for two games with different support strategies. Best response payoffs are in bold. Equilibrium payoffs are in blue.

Numerical example: mixed strategy equilibria

S1 \ S2	0,75	0,77	0,79	0,81	0,83	0,85	p_1	V_1
0,50	10,00	10,00	10,00	10,00	10,00	10,00	0	10,00
0,52	10,40	10,40	10,40	10,40	10,40	10,40	0	10,40
0,54	10,80	10,80	10,80	10,80	10,80	10,80	0.27	10,80
0,56	10,42	10,53	10,86	11,09	11,20	11,20	0.73	10,80
0,58	9,74	9,86	10,09	10,44	10,67	11,37	0	10,05
0,60	9,60	9,60	9,72	10,08	10,44	10,68	0	9,70
S1 \ S2	0,75	0,77	0,79	0,81	0,83	0,85		
0,50	14,70	14,78	14,69	14,74	14,28	14,62		
0,52	14,70	15,09	14,85	14,58	14,61	14,45		
0,54	14,85	14,94	15,17	14,74	14,44	14,45		
0,56	14,85	14,94	14,85	14,90	14,61	14,28		
0,58	15,00	15,09	15,17	15,07	15,11	14,45		
0,60	15,00	15,25	15,48	15,39	15,27	14,30		
<i>p</i> ₂	0	0.19	0.81	0	0	0		
Va	14 85	14 94	14 94	14 86	14 56	14.33		

Payoff matrices of player 1 and player 2

Figure: Game with mixed strategy Nash equilibrium

Discussion

- The model requires finite strategy sets (enumeration), therefore the problem is solvable with small solution spaces only.
- The assumption of a finite game requires price discretization.
- Formulation 1: all pure strategy Nash equilibria of the game can be found, if they exist.
- Formulation 2: among the mixed strategy Nash equilibria, it is possible to select one by choosing a relevant objective function, e.g. total welfare maximization.

2 Modelling the problem

A MILP model for the fixed-point problem

- The fixed-point iteration method stops when the same strategies are played in two consecutive iterations.
- What if we can write a MILP model to minimize the "difference" in strategies between two consecutive iterations?

A MILP model for the fixed-point problem

- A solution for a two-operator problem: (x_1, x_2)
- Optimization problem for operator 1:

$$x_1^* = rg\max_{x_1} V_1(x_1, x_2, (x_{cust}))$$

• Optimization problem for operator 2:

$$x_2^* = \underset{x_2}{\arg \max} V_1(x_1, x_2, (x_{cust}))$$

• Fixed-point problem:

$$\min_{x_1,x_2,x_1^*,x_2^*} \|x_1^* - x_1\| + \|x_2^* - x_2\|$$

Future work

- Implement and test the MILP model for the fixed-point problem.
- Efficient search for equilibria in the solution space.
- Investigation of the concept of Nash equilibrium region for real-life applications.

Questions?

Stefano Bortolomiol

Transport and Mobility Laboratory (TRANSP-OR) École Polytechnique Fédérale de Lausanne (EPFL)

Email: stefano.bortolomiol(at)epfl.ch

SB, VL, MB Modelling competition in demand-based optimization models