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Motivation

Competition in transportation

Competition is often present in the form of oligopolies (regulations,
limited capacity of the infrastructure, barriers to entry, etc.).

Deregulation often led to oligopolistic markets.

Airlines
Railways
Buses
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Motivation

Trending topic
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Motivation

How to study competitive transport markets?

Modelling demand

Modelling supply

Modelling competition
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Motivation

Modelling demand

Each customer chooses the alternative that maximizes his/her utility.

Customers have different tastes and socioeconomic characteristics
that influence their choice.
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Motivation

Modelling supply

Operators take decisions that optimize their objective function
(e.g. revenue maximization).

Decisions can be related to pricing, capacity, frequency, availability ...

Decisions are influenced by:
The preferences of the customers
The decisions of the competitors
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Motivation

Modelling competition

We consider non-cooperative games.

We aim at understanding the Nash equilibrium solutions of such
games, i.e. stationary states of the system in which no competitor has
an incentive to change its decisions.
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Modelling the problem

Modelling the problem

Starting point:
MILP for the demand-based optimization problem for one operator
(Pacheco et al. (2017)).

The goal:
MILP that models the non-cooperative multi-leader-follower game played
by operators and customers.
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Modelling the problem

The framework

Three-level framework: customers, operators and market.

1 Customer level: discrete choice models take into account preference
heterogeneity and model individual decisions. These can be integrated
in a MILP by relying on simulation to draw from the distribution of
the error term of the utility function.

2 Operators level: a mixed integer linear program can maximize any
relevant objective function.

3 Market level: Nash equilibrium solutions are found by enforcing best
response constraints.
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Modelling the problem

The framework: customer level

For all customers n ∈ N and all alternatives i ∈ I , R draws are extracted
from the error term distribution, each corresponding to a different behavioral
scenario. For each r ∈ R we have:

Uinr = βinpin + qin + ξinr

where pin is a variable endogenous to the optimization model, βin is the
corresponding parameter, qin is the exogenous term and ξinr is the error
term.

In each scenario, customers choose the alternative with the highest utility:

winr = 1 if Uinr = max
j∈I

Ujnr , and winr = 0 otherwise

Over multiple scenarios, the probability of n ∈ N choosing i ∈ I is given by:

Pin =

∑
r∈R winr

R

SB, VL, MB Modelling competition in demand-based optimization models 13 / 29



Modelling the problem

The framework: operators level

We assume that an operator k ∈ K can decide on price pin and availability
yin of each alternative i ∈ Ck for all customers n ∈ N.

Stackelberg game: the operator (the leader) knows the best response of the
customers (”collective” follower) to all strategies.

Objective function to be maximized by operator k :

Vk =
1

R

∑
i∈Ck

∑
n∈N

∑
r∈R

pinwinr
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Modelling the problem

The framework: market level

The payoff of an operator also depends on the strategies of the competitors

Let’s define as Xk the set of strategies that can be played by operator k ∈ K

Condition for Nash equilibrium (best response constraints):

Vk = V ∗k = max
xk

Vk(xk , xK\{k}) ∀k ∈ K

Nash (1951) proves that every finite game has at least one mixed strategy
equilibrium solution
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Modelling the problem

A fixed-point iteration method

Sequential algorithm to find Nash

equilibrium solutions of a two-player

game:

Initialization: one player
selects an initial feasible
strategy.

Iterative phase: operators take
turns and each plays its best
response pure strategy to the
last strategy played by the
competitor.

Termination criterion: either a
Nash equilibrium or a cyclic
equilibrium is reached.
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Modelling the problem

A fixed-point iteration method

The algorithm reproduces the behavior of two or more operators that
do not know the competitors’ objective function.

Different initial strategies can lead to different equilibria.

There is no guarantee that a pure strategy Nash equilibrium exists or
that it is unique.
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Modelling the problem

MILP formulations

Pure strategies:

Each operator k ∈ K chooses a pure strategy from a finite set Sk .

Number of pure strategy solutions of the game: |S | =
∏

k∈K Sk .

For each solution s ∈ S we can derive a payoff function Vks for each
operator k ∈ K .

If s ∈ S includes only best response strategies for all operators, then
it is a pure strategy Nash equilibrium for the finite game.

Mixed strategies:

Operator k chooses a mixed strategy from the finite set Sk , i.e. a
vector of probabilities psk associated to all pure strategies sk in Sk ,
such that

∑
sk∈Sk psk = 1.
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Modelling the problem

Customer level

Customer constraints:∑
i∈I

winrs = 1 ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (1)

winrs ≤ yinrs ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (2)

yinrs ≤ yins ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (3)

yins = 0 ∀i ∈ I, ∀n ∈ N : i /∈ Cn, ∀s ∈ S (4)∑
n∈N

winrs ≤ Ci ∀i ∈ I \ {0}, ∀r ∈ R, ∀s ∈ S (5)

Ci (yins − yinrs ) ≤
∑

m∈N:Lim<Lin

wimrs ∀i ∈ I \ {0}, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (6)

∑
m∈N:Lim<Lin

wimrs ≤ (Ci − 1)yinrs + (n − 1)(1 − yinrs ) ∀i ∈ I \ {0}, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (7)

Uinrs = βinpins + qdin + ξinr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (8)

lbUnr ≤ zinrs ≤ lbUnr + MUnr
yinrs ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (9)

Uinrs − MUnr
(1 − yinrs ) ≤ zinrs ≤ Uinrs ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (10)

zinrs ≤ Unr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (11)

Unr ≤ zinrs + MUnr
(1 − winrs ) ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (12)
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Modelling the problem

Operator and market level (Pure strategies)

Find s ∈ S such that es = 1

s.t.

Equilibrium constraints:

es ≥
∑
k∈K

xks − (|K | − 1) ∀s ∈ S (13)

es ≤ xks ∀k ∈ K , ∀s ∈ S (14)

Operator constraints:

Vks =
1

R

∑
i∈Ck

∑
n∈N

∑
r∈R

pinswinrs ∀k ∈ K , ∀s ∈ S (15)

Vks ≤ Vmax
kt ∀k ∈ K , ∀s ∈ Sk , ∀t ∈ SC

k (16)

Vmax
kt ≤ Vks + Mr (1− xks ) ∀k ∈ K , ∀s ∈ Sk , ∀t ∈ SC

k (17)∑
s∈S

xks =
∣∣∣SC

k

∣∣∣ ∀k ∈ K (18)
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Modelling the problem

Operator and market level (Mixed strategies)

Find psk , bsk , rsk , Vsk
, Vk such that... or max

∑
k∈K

Vk or...

s.t.

MILP mixed-strategy Nash:∑
sk∈Sk

psk = 1 ∀k ∈ K (19)

Vsk
=

∑
sC
k
∈SC

k

p
sC
k
Vk (sk , s

C
k ) ∀k ∈ K , ∀sk ∈ Sk (20)

Vk ≥ Vsk
∀k ∈ K , ∀sk ∈ Sk (21)

rsk = Vk − Vsk
∀k ∈ K , ∀sk ∈ Sk (22)

psk ≤ 1− bsk ∀k ∈ K , ∀sk ∈ Sk (23)

rsk ≤ Mbsk ∀k ∈ K , ∀sk ∈ Sk (24)

Pure strategy payoffs:

Vk (sk , s
C
k ) =

1

R

∑
i∈Ck

∑
n∈N

∑
r∈R

pinswinrs ∀k ∈ K , ∀(sk , s
C
k ) ∈ S (25)
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Modelling the problem

Numerical example: pure strategy equilibria
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Modelling the problem

Numerical example: mixed strategy equilibria

Payoff matrices of player 1 and player 2

S1 \ S2 0,75 0,77 0,79 0,81 0,83 0,85 p1 V1

0,50 10,00 10,00 10,00 10,00 10,00 10,00 0 10,00
0,52 10,40 10,40 10,40 10,40 10,40 10,40 0 10,40
0,54 10,80 10,80 10,80 10,80 10,80 10,80 0.27 10,80
0,56 10,42 10,53 10,86 11,09 11,20 11,20 0.73 10,80
0,58 9,74 9,86 10,09 10,44 10,67 11,37 0 10,05
0,60 9,60 9,60 9,72 10,08 10,44 10,68 0 9,70

S1 \ S2 0,75 0,77 0,79 0,81 0,83 0,85
0,50 14,70 14,78 14,69 14,74 14,28 14,62

0,52 14,70 15,09 14,85 14,58 14,61 14,45

0,54 14,85 14,94 15,17 14,74 14,44 14,45

0,56 14,85 14,94 14,85 14,90 14,61 14,28

0,58 15,00 15,09 15,17 15,07 15,11 14,45

0,60 15,00 15,25 15,48 15,39 15,27 14,30

p2 0 0.19 0.81 0 0 0
V2 14.85 14.94 14.94 14.86 14.56 14.33

Figure: Game with mixed strategy Nash equilibrium
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Modelling the problem

Discussion

The model requires finite strategy sets (enumeration), therefore the
problem is solvable with small solution spaces only.

The assumption of a finite game requires price discretization.

Formulation 1: all pure strategy Nash equilibria of the game can be
found, if they exist.

Formulation 2: among the mixed strategy Nash equilibria, it is
possible to select one by choosing a relevant objective function, e.g.
total welfare maximization.

SB, VL, MB Modelling competition in demand-based optimization models 24 / 29



Current status of the research

1 Motivation

2 Modelling the problem

3 Current status of the research

SB, VL, MB Modelling competition in demand-based optimization models 25 / 29



Current status of the research

A MILP model for the fixed-point problem

The fixed-point iteration method stops when the same strategies are
played in two consecutive iterations.

What if we can write a MILP model to minimize the ”difference” in
strategies between two consecutive iterations?
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Current status of the research

A MILP model for the fixed-point problem

A solution for a two-operator problem: (x1, x2)

Optimization problem for operator 1:

x∗1 = arg max
x1

V1(x1, x2, (xcust))

Optimization problem for operator 2:

x∗2 = arg max
x2

V1(x1, x2, (xcust))

Fixed-point problem:

min
x1,x2,x∗1 ,x

∗
2

‖x∗1 − x1‖+ ‖x∗2 − x2‖
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Current status of the research

Future work

Implement and test the MILP model for the fixed-point problem.

Efficient search for equilibria in the solution space.

Investigation of the concept of Nash equilibrium region for real-life
applications.
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Current status of the research

Questions?

Stefano Bortolomiol

Transport and Mobility Laboratory (TRANSP-OR)

École Polytechnique Fédérale de Lausanne (EPFL)

Email: stefano.bortolomiol(at)epfl.ch
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