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Motivation

Competition in transportation

Competition is often present in the form of oligopolies (regulations,
limited capacity of the infrastructure, barriers to entry, etc.).

Deregulation has generally led to oligopolistic markets.

Airlines: U.S. Deregulation Act (1978), then similar laws in Europe.
Railways: directives 91/440/EC and 2012/34/EU give open access to
railway lines in the EU to companies other than those that own the
infrastructure.
Buses: many countries recently opened the market of long-distance
buses.
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Motivation

Example

Operators connecting Milan and Rome:

High-speed train operators

Other transport operators
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Motivation

Modelling demand

Each customer chooses the alternative that maximizes his/her utility.

Customers have different tastes and socioeconomic characteristics
that influence their choice.
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Motivation

Modelling supply

Operators take decisions that optimize their objective function (e.g.
revenue maximization).

Decisions can be related to pricing, capacity, frequency, availability,
and other variables.

Decisions are influenced by:

The preferences of the customers
The decisions of the competitors
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Motivation

Modelling competition

We consider non-cooperative games.

We aim at understanding the Nash equilibrium solutions of such
games, i.e. stationary states of the system in which no competitor has
an incentive to change its decisions.
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Modelling the problem The framework

The framework

Three-level framework: customers, operators and market.

1 Customer level: discrete choice models take into account preference
heterogeneity and model individual decisions. These can be integrated
in a MILP by relying on simulation to draw from the distribution of
the error term of the utility function.

2 Operator level: a mixed integer linear program can maximize any
relevant objective function.

3 Market level: Nash equilibrium solutions are found by enforcing best
response constraints.
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Modelling the problem A fixed-point iteration method

Description

Sequential algorithm to find Nash
equilibrium solutions of a two-players
game:

Initialization: definition of the first
optimizing operator and of an initial
feasible strategy of the competitor.

Iterative phase: operators take turns
and each plays its best response pure
strategy to the last strategy played by
the competitor.

Termination criterion: either a Nash
equilibrium or a cyclic equilibrium is
reached.
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Modelling the problem A fixed-point iteration method

Discussion

The algorithm reproduces the behavior of two or more operators that
do not know the competitors’ objective function.

It can be used with both finite and infinite strategy sets.

Different initial strategies can lead to different equilibria.

There is no guarantee that a pure strategy Nash equilibrium exists or
that it is unique.
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Modelling the problem Towards a simultaneous optimization model

Description

Each operator k ∈ K can choose a pure strategy from its finite set of
strategies Sk .

Number of pure strategy solutions of the game: |S | =
∏

k∈K Sk .

For each solution s ∈ S we can derive a payoff function Vks for each
operator k ∈ K .

If s ∈ S includes only best response strategies for all operators, then
it is a pure strategy Nash equilibrium for the finite game.
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Modelling the problem Towards a simultaneous optimization model

Customer level

Customer constraints:∑
i∈I

winrs = 1 ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (1)

winrs ≤ yinrs ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (2)

yinrs ≤ yins ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (3)

yins = 0 ∀i ∈ I, ∀n ∈ N : i /∈ Cn, ∀s ∈ S (4)∑
n∈N

winrs ≤ Ci ∀i ∈ I \ {0}, ∀r ∈ R, ∀s ∈ S (5)

Ci (yins − yinrs ) ≤
∑

m∈N:Lim<Lin

wimrs ∀i ∈ I \ {0}, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (6)

∑
m∈N:Lim<Lin

wimrs ≤ (Ci − 1)yinrs + (n − 1)(1 − yinrs ) ∀i ∈ I \ {0}, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (7)

Uinrs = βinpins + qdin + ξinr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (8)

lbUnr ≤ zinrs ≤ lbUnr + MUnr
yinrs ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (9)

Uinrs − MUnr
(1 − yinrs ) ≤ zinrs ≤ Uinrs ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (10)

zinrs ≤ Unr ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (11)

Unr ≤ zinrs + MUnr
(1 − winrs ) ∀i ∈ I, ∀n ∈ N, ∀r ∈ R, ∀s ∈ S (12)
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Modelling the problem Towards a simultaneous optimization model

Operator level

Operator constraints:

Vks =
1

R

∑
i∈Ck

∑
n∈N

∑
r∈R

pinswinrs ∀k ∈ K , ∀s ∈ S (13)

Vks ≤ Vmax
kt ∀k ∈ K , ∀s ∈ Sk , ∀t ∈ SC

k (14)

Vmax
kt ≤ Vks + Mr (1− xks ) ∀k ∈ K , ∀s ∈ Sk , ∀t ∈ SC

k (15)∑
s∈S

xks =
∣∣∣SC

k

∣∣∣ ∀k ∈ K (16)
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Modelling the problem Towards a simultaneous optimization model

Market level

Find s ∈ S such that es = 1

s.t.

Equilibrium constraints:

es ≥
∑
k∈K

xks − (|K | − 1) ∀s ∈ S (17)

es ≤ xks ∀k ∈ K , ∀s ∈ S (18)
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Modelling the problem Towards a simultaneous optimization model

Numerical examples
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Modelling the problem Towards a simultaneous optimization model

Discussion

The model requires finite strategy sets (enumeration).

All pure strategy Nash equilibria of the game can be found, however
the problem is solvable with small solution spaces only.

The assumption of a finite game requires price discretization.

SB, VL, MB Modelling competition in demand-based optimization models 21 / 25



Conclusions

1 Motivation

2 Modelling the problem
The framework
A fixed-point iteration method
Towards a simultaneous optimization model

3 Conclusions

SB, VL, MB Modelling competition in demand-based optimization models 22 / 25



Conclusions

Summary

We are analyzing oligopolistic markets from three integrated
perspectives:

Customer level, by using discrete choice models
Operator level, by solving a mixed integer program
Market level, by including equilibrium constraints

We presented two different approaches to find Nash equilibrium
solutions for the resulting non-cooperative multi-leader-follower game.
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Conclusions

Open questions

Extension of the current MILP to include mixed strategy games
(Nash’s existence theorem).

Efficient search for equilibria in the solution space to avoid
enumeration.

Investigation of the concept of Nash equilibrium region for real-life
applications.
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Conclusions

Questions?

Stefano Bortolomiol

Transport and Mobility Laboratory (TRANSP-OR)

École Polytechnique Fédérale de Lausanne (EPFL)

Email: stefano.bortolomiol(at)epfl.ch
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